2D diagnostics (XGCa)¶
XGCa 2D output files xgc.2d.#####.bp and xgc.f2d.#####.bp where ##### is the time step.
xgc.2d.#####.bp
Printed when: diag_3d_on=.true.. Output frequency: diag_1d_period.
Output |
Dimension |
Units |
Description |
---|---|---|---|
dpot |
# 2D mesh nodes |
\(\mathrm{V}\) |
Perturbed potential in volt. |
e_marker_den
i_marker_den
|
# 2D mesh nodes |
\(\mathrm{\#~marker~particles}\) |
Electron/Ion marker density at each mesh node interpolated from surrounding marker particles. |
e_mean_weight
i_mean_weight
|
# 2D mesh nodes |
\(\frac{\mathrm{\#~real~particles}}{\mathrm{\#~marker~particles}}\) |
Electron/Ion mean weight \(\overline{w} = \frac{1}{N_p} {\sum}_{k = 1}^{N_p} w_{1,k} \, w_{0,k}\) at each mesh node interpolated from surrounding marker particles. |
e_weight_variance
i_weight_variance
|
# 2D mesh nodes |
\(\frac{(\mathrm{\#~real~particles})^2}{\mathrm{\#~marker~particles}}\) |
Electron/Ion weight variance \(\sigma^2 = \frac{1}{N_p} {\sum}_{k = 1}^{N_p} (w_{1,k} \, w_{0,k} - \overline{w})^2\) at each mesh node interpolated from surrounding marker particles. |
eden
iden
|
# 2D mesh nodes |
\({\mathrm{m}}^{-3}\) |
Electron/Ion density at each mesh node interpolated from surrounding marker particles. |
epsi |
# 2D mesh nodes |
V/m |
Electric field in the \(\hat{\psi}\) direction |
etheta |
# 2D mesh nodes |
V/m |
Electric field in the \(\hat{\theta}\) direction |
nnode |
Scalar |
Positive integer |
Number of 2D mesh nodes. |
pot0 |
# 2D mesh nodes |
\(\mathrm{V}\) |
Axisymmetric, flux-surface averaged (n=0, m=0) electric potential |
pot0m |
# 2D mesh nodes |
\(\mathrm{V}\) |
Axisymmetric (n=0, m>0) electric potential |
time |
Scalar |
\(\mathrm{s}\) |
Simulation time of step in seconds. |
xgc.f2d.#####.bp
Printed when: ? Output frequency: diag_f3d_period.
Moment calculations of the axisymmetric gyrocenter distribution function \(f\) on the Eulerian space velocity grid, i.e. \(\langle G \rangle_f = \int d\mathbf{v} \, G \, f(v_\perp, v_\parallel)\).
When variables end in _f0, its averaged over the adiabatic component of the distribution function, i.e. \(\langle G \rangle_{f0} = \int d\mathbf{v} \, G \, f_M \exp(-q (\phi - \phi_{00})/T)\).
When variables end in _df, its averaged over the non-adiabatic component of the distribution function, i.e. \(\langle G \rangle_{df} = \langle G \rangle_{f} - \langle G \rangle_{f0}\)
When para or parallel is in the name, the moment weighting includes the parallel velocity.
When poloidal is in the name, the moment weighting includes the poloidal velocity from the equations of motion, \(v_\theta = \frac{1}{B^*}\left[v_\parallel \mathbf{B}^*+\mathbf{v}_{dr} B\right] \cdot \hat{\theta}\)
When toroidal is in the name, the moment weighting includes the toroidal velocity from the equations of motion, \(v_\varphi = \frac{1}{B^*}\left[v_\parallel \mathbf{B}^*+\mathbf{v}_{dr} B\right] \cdot \hat{\varphi}\)
When rad or radial is in the name, the moment weighting includes the radial velocity with \(\nabla \psi\) from the equations of motion, \(v_r = \frac{1}{B^*}\left[v_\parallel \mathbf{B}^*+\mathbf{v}_{dr} B\right] \cdot \nabla \psi\)
Output |
Dimension |
Units |
Description |
---|---|---|---|
e_den
i_den
|
# 2D mesh nodes |
\({\mathrm{m}}^{-3}\) |
Electron/ion density, \(n = \langle 1 \rangle_f\) |
e_u_para
i_u_para
|
# 2D mesh nodes |
\(\mathrm{m/s}\) |
Electron/ion parallel bulk flow, \(u_\parallel = \langle v_\parallel \rangle_{f} / n\) |
e_T_para
i_T_para
|
# 2D mesh nodes |
\(\mathrm{eV}\) |
Electron/ion parallel temperature, \(T_\parallel = \langle m (v_\parallel-u_\parallel)^2 \rangle_f / n\) |
e_T_perp
i_T_perp
|
# 2D mesh nodes |
\(\mathrm{eV}\) |
Electron/ion perpendicular temperature, \(T_\perp = \langle \frac{1}{2} m v_\perp^2 \rangle_f / n\) |
e_parallel_flow_df
i_parallel_flow_df
|
# 2D mesh nodes |
\(\mathrm{m/s}\) |
Electron/ion non-adiabatic parallel bulk flow, \(u_\parallel = \langle v_\parallel \rangle_{df} / n\) |
e_parallel_flow_f0
i_parallel_flow_f0
|
# 2D mesh nodes |
\(\mathrm{m/s}\) |
Electron/ion adiabatic parallel bulk flow, \(u_\parallel = \langle v_\parallel \rangle_{f0} / n\) |
e_poloidal_flow_df
i_poloidal_flow_df
|
# 2D mesh nodes |
\(\mathrm{m/s}\) |
Electron/ion non-adiabatic poloidal bulk flow, \(u_\theta = \langle v_\theta \rangle_{df} / n\). |
e_poloidal_flow_f0
i_poloidal_flow_f0
|
# 2D mesh nodes |
\(\mathrm{m/s}\) |
Electron/ion adiabatic poloidal bulk flow, \(u_\theta = \langle v_\theta \rangle_{f0} / n\). |
e_rad_mom_flux_3db_df
i_rad_mom_flux_3db_df
|
# 2D mesh nodes |
\(\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}\) |
Electron/ion non-adiabatic radial flux of toroidal angular momentum from 3-D magnetic fields, \(\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,3D} \rangle_{df}\) |
e_rad_mom_flux_3db_f0
i_rad_mom_flux_3db_f0
|
# 2D mesh nodes |
\(\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}\) |
Electron/ion adiabatic radial flux of toroidal angular momentum from 3-D magnetic fields, \(\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,3D} \rangle_{f0}\) |
e_rad_mom_flux_ExB_df
i_rad_mom_flux_ExB_df
|
# 2D mesh nodes |
\(\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}\) |
Electron/ion non-adiabatic radial flux of toroidal angular momentum from ExB, \(\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,ExB} \rangle_{df}\) |
e_rad_mom_flux_ExB_f0
i_rad_mom_flux_ExB_f0
|
# 2D mesh nodes |
\(\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}\) |
Electron/ion adiabatic radial flux of toroidal angular momentum from ExB, \(\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,ExB} \rangle_{f0}\) |
e_rad_mom_flux_mag_df
i_rad_mom_flux_mag_df
|
# 2D mesh nodes |
\(\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}\) |
Electron/ion non-adiabatic radial flux of toroidal angular momentum from magnetic drifts, \(\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,mag} \rangle_{df}\) |
e_rad_mom_flux_mag_f0
i_rad_mom_flux_mag_f0
|
# 2D mesh nodes |
\(\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}\) |
Electron/ion adiabatic radial flux of toroidal angular momentum from magnetic drifts, \(\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,mag} \rangle_{f0}\) |
e_radial_en_flux_3db_df
i_radial_en_flux_3db_df
|
# 2D mesh nodes |
\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion non-adiabatic radial flux of energy from 3-D magnetic fields, \(\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,3D} \rangle_{df}\) |
e_radial_en_flux_3db_f0
i_radial_en_flux_3db_f0
|
# 2D mesh nodes |
\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion adiabatic radial flux of energy from 3-D magnetic fields, \(\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,2D} \rangle_{f0}\) |
e_radial_en_flux_ExB_df
i_radial_en_flux_ExB_df
|
# 2D mesh nodes |
\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion non-adiabatic radial flux of energy from ExB, \(\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,ExB} \rangle_{df}\) |
e_radial_en_flux_ExB_f0
i_radial_en_flux_ExB_f0
|
# 2D mesh nodes |
\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion adiabatic radial flux of energy from ExB, \(\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,ExB} \rangle_{f0}\) |
e_radial_en_flux_mag_df
i_radial_en_flux_mag_df
|
# 2D mesh nodes |
\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion non-adiabatic radial flux of energy from magnetic drifts, \(\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,mag} \rangle_{df}\) |
e_radial_en_flux_mag_f0
i_radial_en_flux_mag_f0
|
# 2D mesh nodes |
\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion adiabatic radial flux of energy from magnetic drifts, \(\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,mag} \rangle_{f0}\) |
e_radial_flux_3db_df
i_radial_flux_3db_df
|
# 2D mesh nodes |
\(\mathrm{m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion non-adiabatic radial flux of particles from 3-D magnetic fields, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,3D} \rangle_{df}\) |
e_radial_flux_3db_f0
i_radial_flux_3db_f0
|
# 2D mesh nodes |
\(\mathrm{m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion adiabatic radial flux of particles from 3-D magnetic fields, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,3D} \rangle_{f0}\) |
e_radial_flux_ExB_df
i_radial_flux_ExB_df
|
# 2D mesh nodes |
\(\mathrm{m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion non-adiabatic radial flux of particles from ExB, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,ExB} \rangle_{df}\) |
e_radial_flux_ExB_f0
i_radial_flux_ExB_f0
|
# 2D mesh nodes |
\(\mathrm{m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion non-adiabatic radial flux of particles from ExB, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,ExB} \rangle_{f0}\) |
e_radial_flux_mag_df
i_radial_flux_mag_df
|
# 2D mesh nodes |
\(\mathrm{m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion non-adiabatic radial flux of particles from magnetic drifts, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,mag} \rangle_{df}\) |
e_radial_flux_mag_f0
i_radial_flux_mag_f0
|
# 2D mesh nodes |
\(\mathrm{m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion adiabatic radial flux of particles from magnetic drifts, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,mag} \rangle_{f0}\) |
e_radial_pot_en_flux_3db_df
i_radial_pot_en_flux_3db_df
|
# 2D mesh nodes |
\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion non-adiabatic radial flux of electrostatic potential energy from 3-D magnetic fields, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,3D} \rangle_{df}\) |
e_radial_pot_en_flux_3db_f0
i_radial_pot_en_flux_3db_f0
|
# 2D mesh nodes |
\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion adiabatic radial flux of electrostatic potential energy from 3-D magnetic fields, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,3D} \rangle_{f0}\) |
e_radial_pot_en_flux_ExB_df
i_radial_pot_en_flux_ExB_df
|
# 2D mesh nodes |
\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion non-adiabatic radial flux of electrostatic potential energy from ExB, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,ExB} \rangle_{df}\) |
e_radial_pot_en_flux_ExB_f0
i_radial_pot_en_flux_ExB_f0
|
# 2D mesh nodes |
\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion adiabatic radial flux of electrostatic potential energy from ExB, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,ExB} \rangle_{f0}\) |
e_radial_pot_en_flux_mag_df
i_radial_pot_en_flux_mag_df
|
# 2D mesh nodes |
\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion adiabatic radial flux of electrostatic potential energy from magnetic drifts, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,mag} \rangle_{df}\) |
e_radial_pot_en_flux_mag_f0
i_radial_pot_en_flux_mag_f0
|
# 2D mesh nodes |
\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\) |
Electron/ion adiabatic radial flux of electrostatic potential energy from magnetic drifts, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,mag} \rangle_{f0}\) |
e_tor_ang_mom_df
i_tor_ang_mom_df
|
# 2D mesh nodes |
\(\mathrm{kg \, m^{2} \, s^{-1}}\) |
Electron/ion non-adiabatic toroidal angular momentum, \(\omega = \langle m v_\parallel R \frac{B_\varphi}{B} \rangle_{df}\) |
e_tor_ang_mom_f0
i_tor_ang_mom_f0
|
# 2D mesh nodes |
\(\mathrm{kg \, m^{2} \, s^{-1}}\) |
Electron/ion adiabatic toroidal angular momentum, \(\omega = \langle m v_\parallel R \frac{B_\varphi}{B} \rangle_{f0}\) |
e_toroidal_flow_df
i_toroidal_flow_df
|
# 2D mesh nodes |
\(\mathrm{m/s}\) |
Electron/ion non-adiabatic toroidal flow, \(u_\varphi = \langle v_\varphi \rangle_{df} / n\) |
e_toroidal_flow_f0
i_toroidal_flow_f0
|
# 2D mesh nodes |
\(\mathrm{m/s}\) |
Electron/ion adiabatic toroidal flow, \(u_\varphi = \langle v_\varphi \rangle_{f0} / n\) |
nnode |
Scalar |
Positive integer |
Number of 2D mesh nodes. |
time |
Scalar |
\(\mathrm{s}\) |
Simulation time of step in seconds. |