2D diagnostics (XGCa)¶

XGCa 2D output files xgc.2d.#####.bp and xgc.f2d.#####.bp where ##### is the time step.

xgc.2d.#####.bp
Printed when: diag_3d_on=.true..   Output frequency: diag_1d_period.

Output

Dimension

Units

Description

dpot

# 2D mesh nodes

$$\mathrm{V}$$

Perturbed potential in volt.

e_marker_den
i_marker_den

# 2D mesh nodes

$$\mathrm{\#~marker~particles}$$

Electron/Ion marker density at each mesh node interpolated from surrounding marker particles.

e_mean_weight
i_mean_weight

# 2D mesh nodes

$$\frac{\mathrm{\#~real~particles}}{\mathrm{\#~marker~particles}}$$

Electron/Ion mean weight $$\overline{w} = \frac{1}{N_p} {\sum}_{k = 1}^{N_p} w_{1,k} \, w_{0,k}$$ at each mesh node interpolated from surrounding marker particles.

e_weight_variance
i_weight_variance

# 2D mesh nodes

$$\frac{(\mathrm{\#~real~particles})^2}{\mathrm{\#~marker~particles}}$$

Electron/Ion weight variance $$\sigma^2 = \frac{1}{N_p} {\sum}_{k = 1}^{N_p} (w_{1,k} \, w_{0,k} - \overline{w})^2$$ at each mesh node interpolated from surrounding marker particles.

eden
iden

# 2D mesh nodes

$${\mathrm{m}}^{-3}$$

Electron/Ion density at each mesh node interpolated from surrounding marker particles.

epsi

# 2D mesh nodes

V/m

Electric field in the $$\hat{\psi}$$ direction

etheta

# 2D mesh nodes

V/m

Electric field in the $$\hat{\theta}$$ direction

nnode

Scalar

Positive integer

Number of 2D mesh nodes.

pot0

# 2D mesh nodes

$$\mathrm{V}$$

Axisymmetric, flux-surface averaged (n=0, m=0) electric potential

pot0m

# 2D mesh nodes

$$\mathrm{V}$$

Axisymmetric (n=0, m>0) electric potential

time

Scalar

$$\mathrm{s}$$

Simulation time of step in seconds.

xgc.f2d.#####.bp
Printed when: ?   Output frequency: diag_f3d_period.

Moment calculations of the axisymmetric gyrocenter distribution function $$f$$ on the Eulerian space velocity grid, i.e. $$\langle G \rangle_f = \int d\mathbf{v} \, G \, f(v_\perp, v_\parallel)$$.

• When variables end in _f0, its averaged over the adiabatic component of the distribution function, i.e. $$\langle G \rangle_{f0} = \int d\mathbf{v} \, G \, f_M \exp(-q (\phi - \phi_{00})/T)$$.

• When variables end in _df, its averaged over the non-adiabatic component of the distribution function, i.e. $$\langle G \rangle_{df} = \langle G \rangle_{f} - \langle G \rangle_{f0}$$

• When para or parallel is in the name, the moment weighting includes the parallel velocity.

• When poloidal is in the name, the moment weighting includes the poloidal velocity from the equations of motion, $$v_\theta = \frac{1}{B^*}\left[v_\parallel \mathbf{B}^*+\mathbf{v}_{dr} B\right] \cdot \hat{\theta}$$

• When toroidal is in the name, the moment weighting includes the toroidal velocity from the equations of motion, $$v_\varphi = \frac{1}{B^*}\left[v_\parallel \mathbf{B}^*+\mathbf{v}_{dr} B\right] \cdot \hat{\varphi}$$

• When rad or radial is in the name, the moment weighting includes the radial velocity with $$\nabla \psi$$ from the equations of motion, $$v_r = \frac{1}{B^*}\left[v_\parallel \mathbf{B}^*+\mathbf{v}_{dr} B\right] \cdot \nabla \psi$$

Output

Dimension

Units

Description

e_den
i_den

# 2D mesh nodes

$${\mathrm{m}}^{-3}$$

Electron/ion density, $$n = \langle 1 \rangle_f$$

e_u_para
i_u_para

# 2D mesh nodes

$$\mathrm{m/s}$$

Electron/ion parallel bulk flow, $$u_\parallel = \langle v_\parallel \rangle_{f} / n$$

e_T_para
i_T_para

# 2D mesh nodes

$$\mathrm{eV}$$

Electron/ion parallel temperature, $$T_\parallel = \langle m (v_\parallel-u_\parallel)^2 \rangle_f / n$$

e_T_perp
i_T_perp

# 2D mesh nodes

$$\mathrm{eV}$$

Electron/ion perpendicular temperature, $$T_\perp = \langle \frac{1}{2} m v_\perp^2 \rangle_f / n$$

e_parallel_flow_df
i_parallel_flow_df

# 2D mesh nodes

$$\mathrm{m/s}$$

Electron/ion non-adiabatic parallel bulk flow, $$u_\parallel = \langle v_\parallel \rangle_{df} / n$$

e_parallel_flow_f0
i_parallel_flow_f0

# 2D mesh nodes

$$\mathrm{m/s}$$

Electron/ion adiabatic parallel bulk flow, $$u_\parallel = \langle v_\parallel \rangle_{f0} / n$$

e_poloidal_flow_df
i_poloidal_flow_df

# 2D mesh nodes

$$\mathrm{m/s}$$

Electron/ion non-adiabatic poloidal bulk flow, $$u_\theta = \langle v_\theta \rangle_{df} / n$$.

e_poloidal_flow_f0
i_poloidal_flow_f0

# 2D mesh nodes

$$\mathrm{m/s}$$

Electron/ion adiabatic poloidal bulk flow, $$u_\theta = \langle v_\theta \rangle_{f0} / n$$.

# 2D mesh nodes

$$\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}$$

Electron/ion non-adiabatic radial flux of toroidal angular momentum from 3-D magnetic fields, $$\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,3D} \rangle_{df}$$

# 2D mesh nodes

$$\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}$$

Electron/ion adiabatic radial flux of toroidal angular momentum from 3-D magnetic fields, $$\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,3D} \rangle_{f0}$$

# 2D mesh nodes

$$\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}$$

Electron/ion non-adiabatic radial flux of toroidal angular momentum from ExB, $$\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,ExB} \rangle_{df}$$

# 2D mesh nodes

$$\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}$$

Electron/ion adiabatic radial flux of toroidal angular momentum from ExB, $$\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,ExB} \rangle_{f0}$$

# 2D mesh nodes

$$\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}$$

Electron/ion non-adiabatic radial flux of toroidal angular momentum from magnetic drifts, $$\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,mag} \rangle_{df}$$

# 2D mesh nodes

$$\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}$$

Electron/ion adiabatic radial flux of toroidal angular momentum from magnetic drifts, $$\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,mag} \rangle_{f0}$$

# 2D mesh nodes

$$\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion non-adiabatic radial flux of energy from 3-D magnetic fields, $$\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,3D} \rangle_{df}$$

# 2D mesh nodes

$$\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion adiabatic radial flux of energy from 3-D magnetic fields, $$\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,2D} \rangle_{f0}$$

# 2D mesh nodes

$$\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion non-adiabatic radial flux of energy from ExB, $$\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,ExB} \rangle_{df}$$

# 2D mesh nodes

$$\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion adiabatic radial flux of energy from ExB, $$\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,ExB} \rangle_{f0}$$

# 2D mesh nodes

$$\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion non-adiabatic radial flux of energy from magnetic drifts, $$\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,mag} \rangle_{df}$$

# 2D mesh nodes

$$\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion adiabatic radial flux of energy from magnetic drifts, $$\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,mag} \rangle_{f0}$$

# 2D mesh nodes

$$\mathrm{m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion non-adiabatic radial flux of particles from 3-D magnetic fields, $$\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,3D} \rangle_{df}$$

# 2D mesh nodes

$$\mathrm{m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion adiabatic radial flux of particles from 3-D magnetic fields, $$\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,3D} \rangle_{f0}$$

# 2D mesh nodes

$$\mathrm{m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion non-adiabatic radial flux of particles from ExB, $$\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,ExB} \rangle_{df}$$

# 2D mesh nodes

$$\mathrm{m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion non-adiabatic radial flux of particles from ExB, $$\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,ExB} \rangle_{f0}$$

# 2D mesh nodes

$$\mathrm{m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion non-adiabatic radial flux of particles from magnetic drifts, $$\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,mag} \rangle_{df}$$

# 2D mesh nodes

$$\mathrm{m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion adiabatic radial flux of particles from magnetic drifts, $$\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,mag} \rangle_{f0}$$

# 2D mesh nodes

$$\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion non-adiabatic radial flux of electrostatic potential energy from 3-D magnetic fields, $$\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,3D} \rangle_{df}$$

# 2D mesh nodes

$$\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion adiabatic radial flux of electrostatic potential energy from 3-D magnetic fields, $$\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,3D} \rangle_{f0}$$

# 2D mesh nodes

$$\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion non-adiabatic radial flux of electrostatic potential energy from ExB, $$\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,ExB} \rangle_{df}$$

# 2D mesh nodes

$$\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion adiabatic radial flux of electrostatic potential energy from ExB, $$\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,ExB} \rangle_{f0}$$

# 2D mesh nodes

$$\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion adiabatic radial flux of electrostatic potential energy from magnetic drifts, $$\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,mag} \rangle_{df}$$

# 2D mesh nodes

$$\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}$$

Electron/ion adiabatic radial flux of electrostatic potential energy from magnetic drifts, $$\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,mag} \rangle_{f0}$$

e_tor_ang_mom_df
i_tor_ang_mom_df

# 2D mesh nodes

$$\mathrm{kg \, m^{2} \, s^{-1}}$$

Electron/ion non-adiabatic toroidal angular momentum, $$\omega = \langle m v_\parallel R \frac{B_\varphi}{B} \rangle_{df}$$

e_tor_ang_mom_f0
i_tor_ang_mom_f0

# 2D mesh nodes

$$\mathrm{kg \, m^{2} \, s^{-1}}$$

Electron/ion adiabatic toroidal angular momentum, $$\omega = \langle m v_\parallel R \frac{B_\varphi}{B} \rangle_{f0}$$

e_toroidal_flow_df
i_toroidal_flow_df

# 2D mesh nodes

$$\mathrm{m/s}$$

Electron/ion non-adiabatic toroidal flow, $$u_\varphi = \langle v_\varphi \rangle_{df} / n$$

e_toroidal_flow_f0
i_toroidal_flow_f0

# 2D mesh nodes

$$\mathrm{m/s}$$

Electron/ion adiabatic toroidal flow, $$u_\varphi = \langle v_\varphi \rangle_{f0} / n$$

nnode

Scalar

Positive integer

Number of 2D mesh nodes.

time

Scalar

$$\mathrm{s}$$

Simulation time of step in seconds.