2D diagnostics (XGCa)

XGCa 2D output files xgc.2d.#####.bp and xgc.f2d.#####.bp where ##### is the time step.

xgc.2d.#####.bp
Printed when: diag_3d_on=.true..   Output frequency: diag_1d_period.

Output

Dimension

Units

Description

dpot

# 2D mesh nodes

\(\mathrm{V}\)

Perturbed potential in volt.

e_marker_den
i_marker_den

# 2D mesh nodes

\(\mathrm{\#~marker~particles}\)

Electron/Ion marker density at each mesh node interpolated from surrounding marker particles.

e_mean_weight
i_mean_weight

# 2D mesh nodes

\(\frac{\mathrm{\#~real~particles}}{\mathrm{\#~marker~particles}}\)

Electron/Ion mean weight \(\overline{w} = \frac{1}{N_p} {\sum}_{k = 1}^{N_p} w_{1,k} \, w_{0,k}\) at each mesh node interpolated from surrounding marker particles.

e_weight_variance
i_weight_variance

# 2D mesh nodes

\(\frac{(\mathrm{\#~real~particles})^2}{\mathrm{\#~marker~particles}}\)

Electron/Ion weight variance \(\sigma^2 = \frac{1}{N_p} {\sum}_{k = 1}^{N_p} (w_{1,k} \, w_{0,k} - \overline{w})^2\) at each mesh node interpolated from surrounding marker particles.

eden
iden

# 2D mesh nodes

\({\mathrm{m}}^{-3}\)

Electron/Ion density at each mesh node interpolated from surrounding marker particles.

epsi

# 2D mesh nodes

V/m

Electric field in the \(\hat{\psi}\) direction

etheta

# 2D mesh nodes

V/m

Electric field in the \(\hat{\theta}\) direction

nnode

Scalar

Positive integer

Number of 2D mesh nodes.

pot0

# 2D mesh nodes

\(\mathrm{V}\)

Axisymmetric, flux-surface averaged (n=0, m=0) electric potential

pot0m

# 2D mesh nodes

\(\mathrm{V}\)

Axisymmetric (n=0, m>0) electric potential

time

Scalar

\(\mathrm{s}\)

Simulation time of step in seconds.


xgc.f2d.#####.bp
Printed when: ?   Output frequency: diag_f3d_period.

Moment calculations of the axisymmetric gyrocenter distribution function \(f\) on the Eulerian space velocity grid, i.e. \(\langle G \rangle_f = \int d\mathbf{v} \, G \, f(v_\perp, v_\parallel)\).

  • When variables end in _f0, its averaged over the adiabatic component of the distribution function, i.e. \(\langle G \rangle_{f0} = \int d\mathbf{v} \, G \, f_M \exp(-q (\phi - \phi_{00})/T)\).

  • When variables end in _df, its averaged over the non-adiabatic component of the distribution function, i.e. \(\langle G \rangle_{df} = \langle G \rangle_{f} - \langle G \rangle_{f0}\)

  • When para or parallel is in the name, the moment weighting includes the parallel velocity.

  • When poloidal is in the name, the moment weighting includes the poloidal velocity from the equations of motion, \(v_\theta = \frac{1}{B^*}\left[v_\parallel \mathbf{B}^*+\mathbf{v}_{dr} B\right] \cdot \hat{\theta}\)

  • When toroidal is in the name, the moment weighting includes the toroidal velocity from the equations of motion, \(v_\varphi = \frac{1}{B^*}\left[v_\parallel \mathbf{B}^*+\mathbf{v}_{dr} B\right] \cdot \hat{\varphi}\)

  • When rad or radial is in the name, the moment weighting includes the radial velocity with \(\nabla \psi\) from the equations of motion, \(v_r = \frac{1}{B^*}\left[v_\parallel \mathbf{B}^*+\mathbf{v}_{dr} B\right] \cdot \nabla \psi\)

Output

Dimension

Units

Description

e_den
i_den

# 2D mesh nodes

\({\mathrm{m}}^{-3}\)

Electron/ion density, \(n = \langle 1 \rangle_f\)

e_u_para
i_u_para

# 2D mesh nodes

\(\mathrm{m/s}\)

Electron/ion parallel bulk flow, \(u_\parallel = \langle v_\parallel \rangle_{f} / n\)

e_T_para
i_T_para

# 2D mesh nodes

\(\mathrm{eV}\)

Electron/ion parallel temperature, \(T_\parallel = \langle m (v_\parallel-u_\parallel)^2 \rangle_f / n\)

e_T_perp
i_T_perp

# 2D mesh nodes

\(\mathrm{eV}\)

Electron/ion perpendicular temperature, \(T_\perp = \langle \frac{1}{2} m v_\perp^2 \rangle_f / n\)

e_parallel_flow_df
i_parallel_flow_df

# 2D mesh nodes

\(\mathrm{m/s}\)

Electron/ion non-adiabatic parallel bulk flow, \(u_\parallel = \langle v_\parallel \rangle_{df} / n\)

e_parallel_flow_f0
i_parallel_flow_f0

# 2D mesh nodes

\(\mathrm{m/s}\)

Electron/ion adiabatic parallel bulk flow, \(u_\parallel = \langle v_\parallel \rangle_{f0} / n\)

e_poloidal_flow_df
i_poloidal_flow_df

# 2D mesh nodes

\(\mathrm{m/s}\)

Electron/ion non-adiabatic poloidal bulk flow, \(u_\theta = \langle v_\theta \rangle_{df} / n\).

e_poloidal_flow_f0
i_poloidal_flow_f0

# 2D mesh nodes

\(\mathrm{m/s}\)

Electron/ion adiabatic poloidal bulk flow, \(u_\theta = \langle v_\theta \rangle_{f0} / n\).

e_rad_mom_flux_3db_df
i_rad_mom_flux_3db_df

# 2D mesh nodes

\(\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}\)

Electron/ion non-adiabatic radial flux of toroidal angular momentum from 3-D magnetic fields, \(\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,3D} \rangle_{df}\)

e_rad_mom_flux_3db_f0
i_rad_mom_flux_3db_f0

# 2D mesh nodes

\(\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}\)

Electron/ion adiabatic radial flux of toroidal angular momentum from 3-D magnetic fields, \(\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,3D} \rangle_{f0}\)

e_rad_mom_flux_ExB_df
i_rad_mom_flux_ExB_df

# 2D mesh nodes

\(\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}\)

Electron/ion non-adiabatic radial flux of toroidal angular momentum from ExB, \(\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,ExB} \rangle_{df}\)

e_rad_mom_flux_ExB_f0
i_rad_mom_flux_ExB_f0

# 2D mesh nodes

\(\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}\)

Electron/ion adiabatic radial flux of toroidal angular momentum from ExB, \(\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,ExB} \rangle_{f0}\)

e_rad_mom_flux_mag_df
i_rad_mom_flux_mag_df

# 2D mesh nodes

\(\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}\)

Electron/ion non-adiabatic radial flux of toroidal angular momentum from magnetic drifts, \(\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,mag} \rangle_{df}\)

e_rad_mom_flux_mag_f0
i_rad_mom_flux_mag_f0

# 2D mesh nodes

\(\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}\)

Electron/ion adiabatic radial flux of toroidal angular momentum from magnetic drifts, \(\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,mag} \rangle_{f0}\)

e_radial_en_flux_3db_df
i_radial_en_flux_3db_df

# 2D mesh nodes

\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion non-adiabatic radial flux of energy from 3-D magnetic fields, \(\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,3D} \rangle_{df}\)

e_radial_en_flux_3db_f0
i_radial_en_flux_3db_f0

# 2D mesh nodes

\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion adiabatic radial flux of energy from 3-D magnetic fields, \(\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,2D} \rangle_{f0}\)

e_radial_en_flux_ExB_df
i_radial_en_flux_ExB_df

# 2D mesh nodes

\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion non-adiabatic radial flux of energy from ExB, \(\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,ExB} \rangle_{df}\)

e_radial_en_flux_ExB_f0
i_radial_en_flux_ExB_f0

# 2D mesh nodes

\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion adiabatic radial flux of energy from ExB, \(\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,ExB} \rangle_{f0}\)

e_radial_en_flux_mag_df
i_radial_en_flux_mag_df

# 2D mesh nodes

\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion non-adiabatic radial flux of energy from magnetic drifts, \(\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,mag} \rangle_{df}\)

e_radial_en_flux_mag_f0
i_radial_en_flux_mag_f0

# 2D mesh nodes

\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion adiabatic radial flux of energy from magnetic drifts, \(\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,mag} \rangle_{f0}\)

e_radial_flux_3db_df
i_radial_flux_3db_df

# 2D mesh nodes

\(\mathrm{m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion non-adiabatic radial flux of particles from 3-D magnetic fields, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,3D} \rangle_{df}\)

e_radial_flux_3db_f0
i_radial_flux_3db_f0

# 2D mesh nodes

\(\mathrm{m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion adiabatic radial flux of particles from 3-D magnetic fields, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,3D} \rangle_{f0}\)

e_radial_flux_ExB_df
i_radial_flux_ExB_df

# 2D mesh nodes

\(\mathrm{m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion non-adiabatic radial flux of particles from ExB, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,ExB} \rangle_{df}\)

e_radial_flux_ExB_f0
i_radial_flux_ExB_f0

# 2D mesh nodes

\(\mathrm{m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion non-adiabatic radial flux of particles from ExB, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,ExB} \rangle_{f0}\)

e_radial_flux_mag_df
i_radial_flux_mag_df

# 2D mesh nodes

\(\mathrm{m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion non-adiabatic radial flux of particles from magnetic drifts, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,mag} \rangle_{df}\)

e_radial_flux_mag_f0
i_radial_flux_mag_f0

# 2D mesh nodes

\(\mathrm{m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion adiabatic radial flux of particles from magnetic drifts, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,mag} \rangle_{f0}\)

e_radial_pot_en_flux_3db_df
i_radial_pot_en_flux_3db_df

# 2D mesh nodes

\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion non-adiabatic radial flux of electrostatic potential energy from 3-D magnetic fields, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,3D} \rangle_{df}\)

e_radial_pot_en_flux_3db_f0
i_radial_pot_en_flux_3db_f0

# 2D mesh nodes

\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion adiabatic radial flux of electrostatic potential energy from 3-D magnetic fields, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,3D} \rangle_{f0}\)

e_radial_pot_en_flux_ExB_df
i_radial_pot_en_flux_ExB_df

# 2D mesh nodes

\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion non-adiabatic radial flux of electrostatic potential energy from ExB, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,ExB} \rangle_{df}\)

e_radial_pot_en_flux_ExB_f0
i_radial_pot_en_flux_ExB_f0

# 2D mesh nodes

\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion adiabatic radial flux of electrostatic potential energy from ExB, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,ExB} \rangle_{f0}\)

e_radial_pot_en_flux_mag_df
i_radial_pot_en_flux_mag_df

# 2D mesh nodes

\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion adiabatic radial flux of electrostatic potential energy from magnetic drifts, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,mag} \rangle_{df}\)

e_radial_pot_en_flux_mag_f0
i_radial_pot_en_flux_mag_f0

# 2D mesh nodes

\(\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}\)

Electron/ion adiabatic radial flux of electrostatic potential energy from magnetic drifts, \(\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,mag} \rangle_{f0}\)

e_tor_ang_mom_df
i_tor_ang_mom_df

# 2D mesh nodes

\(\mathrm{kg \, m^{2} \, s^{-1}}\)

Electron/ion non-adiabatic toroidal angular momentum, \(\omega = \langle m v_\parallel R \frac{B_\varphi}{B} \rangle_{df}\)

e_tor_ang_mom_f0
i_tor_ang_mom_f0

# 2D mesh nodes

\(\mathrm{kg \, m^{2} \, s^{-1}}\)

Electron/ion adiabatic toroidal angular momentum, \(\omega = \langle m v_\parallel R \frac{B_\varphi}{B} \rangle_{f0}\)

e_toroidal_flow_df
i_toroidal_flow_df

# 2D mesh nodes

\(\mathrm{m/s}\)

Electron/ion non-adiabatic toroidal flow, \(u_\varphi = \langle v_\varphi \rangle_{df} / n\)

e_toroidal_flow_f0
i_toroidal_flow_f0

# 2D mesh nodes

\(\mathrm{m/s}\)

Electron/ion adiabatic toroidal flow, \(u_\varphi = \langle v_\varphi \rangle_{f0} / n\)

nnode

Scalar

Positive integer

Number of 2D mesh nodes.

time

Scalar

\(\mathrm{s}\)

Simulation time of step in seconds.