2D diagnostics (XGCa) --------------------- .. No-Break Space .. |nbsp| unicode:: 0xA0 :trim: .. raw:: html .. role:: red .. raw:: html .. role:: smallbluegray .. New line .. |br| raw:: html
XGCa 2D output files xgc.2d.#####.bp and xgc.f2d.#####.bp where ##### is the time step. .. centered:: **xgc.2d.#####.bp** |br| :smallbluegray:`Printed when: diag_3d_on=.true..` |nbsp| |nbsp| |nbsp| :smallbluegray:`Output frequency: diag_1d_period.` .. list-table:: :widths: 25 25 10 100 :header-rows: 1 * - *Output* - Dimension - Units - Description * - *dpot* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{V}` - Perturbed potential in volt. * - | *e_marker_den* | *i_marker_den* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{\#~marker~particles}` - Electron/Ion marker density at each mesh node interpolated from surrounding marker particles. * - | *e_mean_weight* | *i_mean_weight* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\frac{\mathrm{\#~real~particles}}{\mathrm{\#~marker~particles}}` - Electron/Ion mean weight :math:`\overline{w} = \frac{1}{N_p} {\sum}_{k = 1}^{N_p} w_{1,k} \, w_{0,k}` at each mesh node interpolated from surrounding marker particles. * - | *e_weight_variance* | *i_weight_variance* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\frac{(\mathrm{\#~real~particles})^2}{\mathrm{\#~marker~particles}}` - Electron/Ion weight variance :math:`\sigma^2 = \frac{1}{N_p} {\sum}_{k = 1}^{N_p} (w_{1,k} \, w_{0,k} - \overline{w})^2` at each mesh node interpolated from surrounding marker particles. * - | *eden* | *iden* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`{\mathrm{m}}^{-3}` - Electron/Ion density at each mesh node interpolated from surrounding marker particles. * - *epsi* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - V/m - Electric field in the :math:`\hat{\psi}` direction * - *etheta* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - V/m - Electric field in the :math:`\hat{\theta}` direction * - *nnode* - Scalar - Positive integer - Number of 2D mesh nodes. * - *pot0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{V}` - Axisymmetric, flux-surface averaged (n=0, m=0) electric potential * - *pot0m* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{V}` - Axisymmetric (n=0, m>0) electric potential * - *time* - Scalar - :math:`\mathrm{s}` - Simulation time of step in seconds. |br| .. centered:: **xgc.f2d.#####.bp** |br| :smallbluegray:`Printed when: ?` |nbsp| |nbsp| |nbsp| :smallbluegray:`Output frequency: diag_f3d_period.` Moment calculations of the axisymmetric gyrocenter distribution function :math:`f` on the Eulerian space velocity grid, i.e. :math:`\langle G \rangle_f = \int d\mathbf{v} \, G \, f(v_\perp, v_\parallel)`. - When variables end in *_f0*, its averaged over the adiabatic component of the distribution function, i.e. :math:`\langle G \rangle_{f0} = \int d\mathbf{v} \, G \, f_M \exp(-q (\phi - \phi_{00})/T)`. - When variables end in *_df*, its averaged over the non-adiabatic component of the distribution function, i.e. :math:`\langle G \rangle_{df} = \langle G \rangle_{f} - \langle G \rangle_{f0}` - When *para* or *parallel* is in the name, the moment weighting includes the parallel velocity. - When *poloidal* is in the name, the moment weighting includes the poloidal velocity from the equations of motion, :math:`v_\theta = \frac{1}{B^*}\left[v_\parallel \mathbf{B}^*+\mathbf{v}_{dr} B\right] \cdot \hat{\theta}` - When *toroidal* is in the name, the moment weighting includes the toroidal velocity from the equations of motion, :math:`v_\varphi = \frac{1}{B^*}\left[v_\parallel \mathbf{B}^*+\mathbf{v}_{dr} B\right] \cdot \hat{\varphi}` - When *rad* or *radial* is in the name, the moment weighting includes the radial velocity with :math:`\nabla \psi` from the equations of motion, :math:`v_r = \frac{1}{B^*}\left[v_\parallel \mathbf{B}^*+\mathbf{v}_{dr} B\right] \cdot \nabla \psi` .. list-table:: :widths: 25 25 10 100 :header-rows: 1 * - *Output* - Dimension - Units - Description * - | *e_den* | *i_den* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`{\mathrm{m}}^{-3}` - Electron/ion density, :math:`n = \langle 1 \rangle_f` * - | *e_u_para* | *i_u_para* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{m/s}` - Electron/ion parallel bulk flow, :math:`u_\parallel = \langle v_\parallel \rangle_{f} / n` * - | *e_T_para* | *i_T_para* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{eV}` - Electron/ion parallel temperature, :math:`T_\parallel = \langle m (v_\parallel-u_\parallel)^2 \rangle_f / n` * - | *e_T_perp* | *i_T_perp* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{eV}` - Electron/ion perpendicular temperature, :math:`T_\perp = \langle \frac{1}{2} m v_\perp^2 \rangle_f / n` * - | *e_parallel_flow_df* | *i_parallel_flow_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{m/s}` - Electron/ion non-adiabatic parallel bulk flow, :math:`u_\parallel = \langle v_\parallel \rangle_{df} / n` * - | *e_parallel_flow_f0* | *i_parallel_flow_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{m/s}` - Electron/ion adiabatic parallel bulk flow, :math:`u_\parallel = \langle v_\parallel \rangle_{f0} / n` * - | *e_poloidal_flow_df* | *i_poloidal_flow_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{m/s}` - Electron/ion non-adiabatic poloidal bulk flow, :math:`u_\theta = \langle v_\theta \rangle_{df} / n`. * - | *e_poloidal_flow_f0* | *i_poloidal_flow_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{m/s}` - Electron/ion adiabatic poloidal bulk flow, :math:`u_\theta = \langle v_\theta \rangle_{f0} / n`. * - | *e_rad_mom_flux_3db_df* | *i_rad_mom_flux_3db_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}` - Electron/ion non-adiabatic radial flux of toroidal angular momentum from 3-D magnetic fields, :math:`\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,3D} \rangle_{df}` * - | *e_rad_mom_flux_3db_f0* | *i_rad_mom_flux_3db_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}` - Electron/ion adiabatic radial flux of toroidal angular momentum from 3-D magnetic fields, :math:`\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,3D} \rangle_{f0}` * - | *e_rad_mom_flux_ExB_df* | *i_rad_mom_flux_ExB_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}` - Electron/ion non-adiabatic radial flux of toroidal angular momentum from ExB, :math:`\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,ExB} \rangle_{df}` * - | *e_rad_mom_flux_ExB_f0* | *i_rad_mom_flux_ExB_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}` - Electron/ion adiabatic radial flux of toroidal angular momentum from ExB, :math:`\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,ExB} \rangle_{f0}` * - | *e_rad_mom_flux_mag_df* | *i_rad_mom_flux_mag_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}` - Electron/ion non-adiabatic radial flux of toroidal angular momentum from magnetic drifts, :math:`\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,mag} \rangle_{df}` * - | *e_rad_mom_flux_mag_f0* | *i_rad_mom_flux_mag_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{kg \, m^{-1} \, s^{-2} \, T \, m}` - Electron/ion adiabatic radial flux of toroidal angular momentum from magnetic drifts, :math:`\mathbf{\Pi} \cdot \nabla \psi = \langle m v_\parallel R \frac{B_\varphi}{B} v_{r,mag} \rangle_{f0}` * - | *e_radial_en_flux_3db_df* | *i_radial_en_flux_3db_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}` - Electron/ion non-adiabatic radial flux of energy from 3-D magnetic fields, :math:`\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,3D} \rangle_{df}` * - | *e_radial_en_flux_3db_f0* | *i_radial_en_flux_3db_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}` - Electron/ion adiabatic radial flux of energy from 3-D magnetic fields, :math:`\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,2D} \rangle_{f0}` * - | *e_radial_en_flux_ExB_df* | *i_radial_en_flux_ExB_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}` - Electron/ion non-adiabatic radial flux of energy from ExB, :math:`\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,ExB} \rangle_{df}` * - | *e_radial_en_flux_ExB_f0* | *i_radial_en_flux_ExB_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}` - Electron/ion adiabatic radial flux of energy from ExB, :math:`\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,ExB} \rangle_{f0}` * - | *e_radial_en_flux_mag_df* | *i_radial_en_flux_mag_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}` - Electron/ion non-adiabatic radial flux of energy from magnetic drifts, :math:`\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,mag} \rangle_{df}` * - | *e_radial_en_flux_mag_f0* | *i_radial_en_flux_mag_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}` - Electron/ion adiabatic radial flux of energy from magnetic drifts, :math:`\mathbf{Q} \cdot \nabla \psi = \langle \frac{1}{2} m v^2 v_{r,mag} \rangle_{f0}` * - | *e_radial_flux_3db_df* | *i_radial_flux_3db_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{m^{-2} \, s^{-1} \, T \, m}` - Electron/ion non-adiabatic radial flux of particles from 3-D magnetic fields, :math:`\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,3D} \rangle_{df}` * - | *e_radial_flux_3db_f0* | *i_radial_flux_3db_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{m^{-2} \, s^{-1} \, T \, m}` - Electron/ion adiabatic radial flux of particles from 3-D magnetic fields, :math:`\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,3D} \rangle_{f0}` * - | *e_radial_flux_ExB_df* | *i_radial_flux_ExB_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{m^{-2} \, s^{-1} \, T \, m}` - Electron/ion non-adiabatic radial flux of particles from ExB, :math:`\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,ExB} \rangle_{df}` * - | *e_radial_flux_ExB_f0* | *i_radial_flux_ExB_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{m^{-2} \, s^{-1} \, T \, m}` - Electron/ion non-adiabatic radial flux of particles from ExB, :math:`\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,ExB} \rangle_{f0}` * - | *e_radial_flux_mag_df* | *i_radial_flux_mag_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{m^{-2} \, s^{-1} \, T \, m}` - Electron/ion non-adiabatic radial flux of particles from magnetic drifts, :math:`\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,mag} \rangle_{df}` * - | *e_radial_flux_mag_f0* | *i_radial_flux_mag_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{m^{-2} \, s^{-1} \, T \, m}` - Electron/ion adiabatic radial flux of particles from magnetic drifts, :math:`\mathbf{\Gamma} \cdot \nabla \psi = \langle v_{r,mag} \rangle_{f0}` * - | *e_radial_pot_en_flux_3db_df* | *i_radial_pot_en_flux_3db_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}` - Electron/ion non-adiabatic radial flux of electrostatic potential energy from 3-D magnetic fields, :math:`\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,3D} \rangle_{df}` * - | *e_radial_pot_en_flux_3db_f0* | *i_radial_pot_en_flux_3db_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}` - Electron/ion adiabatic radial flux of electrostatic potential energy from 3-D magnetic fields, :math:`\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,3D} \rangle_{f0}` * - | *e_radial_pot_en_flux_ExB_df* | *i_radial_pot_en_flux_ExB_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}` - Electron/ion non-adiabatic radial flux of electrostatic potential energy from ExB, :math:`\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,ExB} \rangle_{df}` * - | *e_radial_pot_en_flux_ExB_f0* | *i_radial_pot_en_flux_ExB_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}` - Electron/ion adiabatic radial flux of electrostatic potential energy from ExB, :math:`\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,ExB} \rangle_{f0}` * - | *e_radial_pot_en_flux_mag_df* | *i_radial_pot_en_flux_mag_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}` - Electron/ion adiabatic radial flux of electrostatic potential energy from magnetic drifts, :math:`\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,mag} \rangle_{df}` * - | *e_radial_pot_en_flux_mag_f0* | *i_radial_pot_en_flux_mag_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{J \, m^{-2} \, s^{-1} \, T \, m}` - Electron/ion adiabatic radial flux of electrostatic potential energy from magnetic drifts, :math:`\mathbf{\Gamma} \cdot \nabla \psi = \langle q \phi v_{r,mag} \rangle_{f0}` * - | *e_tor_ang_mom_df* | *i_tor_ang_mom_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{kg \, m^{2} \, s^{-1}}` - Electron/ion non-adiabatic toroidal angular momentum, :math:`\omega = \langle m v_\parallel R \frac{B_\varphi}{B} \rangle_{df}` * - | *e_tor_ang_mom_f0* | *i_tor_ang_mom_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{kg \, m^{2} \, s^{-1}}` - Electron/ion adiabatic toroidal angular momentum, :math:`\omega = \langle m v_\parallel R \frac{B_\varphi}{B} \rangle_{f0}` * - | *e_toroidal_flow_df* | *i_toroidal_flow_df* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{m/s}` - Electron/ion non-adiabatic toroidal flow, :math:`u_\varphi = \langle v_\varphi \rangle_{df} / n` * - | *e_toroidal_flow_f0* | *i_toroidal_flow_f0* - # |nbsp| 2D |nbsp| mesh |nbsp| nodes - :math:`\mathrm{m/s}` - Electron/ion adiabatic toroidal flow, :math:`u_\varphi = \langle v_\varphi \rangle_{f0} / n` * - *nnode* - Scalar - Positive integer - Number of 2D mesh nodes. * - *time* - Scalar - :math:`\mathrm{s}` - Simulation time of step in seconds. .. toctree:: :maxdepth: 1