7 extern "C" void f0_init_decomposed_ptrs(
double* f0_T_ev_cpp,
double* f0_fg_T_ev_cpp,
double* f0_inv_grid_vol_cpp,
double* f0_grid_vol_cpp,
8 double* f0_grid_vol_vonly_cpp,
double* f0_den_cpp,
10 extern "C" void f0_set_ptrs(
int nnode,
double* f0_delta_n_cpp,
double* f0_delta_u_cpp,
double* f0_delta_T_cpp);
11 extern "C" void set_f0_f0g_ptr(
int f0_inode1,
int f0_inode2,
double* f0_f0g_loc);
49 View<double**,CLayout, HostType>
f0_den;
56 :
f0_T_ev(
"f0_T_ev", nsp, pol_decomp.nnodes),
57 f0_fg_T_ev(
"f0_fg_T_ev", nsp, pol_decomp.nnodes),
62 f0_den(
"f0_den", nsp, pol_decomp.nnodes),
63 f0_flow(
"f0_flow", nsp, pol_decomp.nnodes)
65 #ifndef NO_FORTRAN_MODULES
100 sp_names{
"e",
"i",
"i2",
"i3",
"i4",
"i5",
"i6"}
129 printf(
"ISP ERROR in for_all_nonadiabatic_sepcies: isp=%d",isp);
216 max_n_ptl = std::max(max_n_ptl,species.
n_ptl);
228 species.
particles_d = Cabana::AoSoA<ParticleDataTypes,DeviceType,VEC_LEN>();
232 particles_d_has_owner =
false;
246 void initialize_spitzer_res();
251 f0_delta_n = View<double**,CLayout, HostType>(
"f0_delta_n", nspecies, grid.
nnode);
252 f0_delta_u = View<double**,CLayout, HostType>(
"f0_delta_u", nspecies, grid.
nnode);
253 f0_delta_T = View<double**,CLayout, HostType>(
"f0_delta_T", nspecies, grid.
nnode);
256 set_unmanaged_f0_species_view(f0_delta_n, species.
idx, species.
f0.delta_n_h);
257 set_unmanaged_f0_species_view(f0_delta_u, species.
idx, species.
f0.delta_u_h);
258 set_unmanaged_f0_species_view(f0_delta_T, species.
idx, species.
f0.delta_T_h);
260 #ifndef NO_FORTRAN_MODULES
262 f0_set_ptrs(grid.
nnode, f0_delta_n.data(), f0_delta_u.data(), f0_delta_T.data());
270 initialize_spitzer_res();
274 template<
typename T_in,
typename T_out>
276 auto view_in_subview =
my_subview(view_in, isp);
277 view_out = T_out(view_in_subview.data(), view_in_subview.layout());
285 #ifndef NO_FORTRAN_MODULES
287 int f0_inode2 = f0_inode1 + pol_decomp.
nnodes - 1;
292 int f0_species_cnt=0;
294 set_unmanaged_f0_species_view(f0_f0g.f, f0_species_cnt, species.
f0.f0g_h);
302 if(!particles_d_has_owner){
304 particles_d_owner = isp;
306 all_species[particles_d_owner].particles_d = Cabana::AoSoA<ParticleDataTypes,DeviceType,VEC_LEN>(
"particles_d", 0);
307 all_species[particles_d_owner].owns_particles_d =
true;
308 particles_d_has_owner =
true;
311 if(particles_d_owner == isp)
return;
314 all_species[isp].particles_d = all_species[particles_d_owner].particles_d;
317 all_species[particles_d_owner].particles_d = Cabana::AoSoA<ParticleDataTypes,DeviceType,VEC_LEN>();
318 all_species[particles_d_owner].owns_particles_d =
false;
321 particles_d_owner = isp;
322 all_species[particles_d_owner].owns_particles_d =
true;
327 if((!all_species[isp].is_adiabatic) && device_ptl_opt==UseDevicePtl){
328 if(species_share_particles_d_ownership){
329 transfer_particles_d_ownership(isp);
331 if(!all_species[isp].owns_particles_d){
332 all_species[isp].particles_d = Cabana::AoSoA<ParticleDataTypes,DeviceType,VEC_LEN>(
"particles_d", 0);
333 all_species[isp].owns_particles_d =
true;
338 all_species[isp].resize_device_particles();
348 double main_ion_mass = all_species[
MAIN_ION].mass;
350 double characteristic_velocity = sqrt(2*main_ion_characteristic_energy/main_ion_mass);
351 return axis_length / characteristic_velocity;
View< double *, CLayout, HostType > spitzer_resistivity
Definition: plasma.hpp:87
Definition: globals.hpp:84
void for_all_ions(F func, DevicePtlOpt device_ptl_opt=UseDevicePtl)
Definition: plasma.hpp:152
bool owns_particles_d
Whether the species owns the device particle allocation right now.
Definition: species.hpp:108
double * data() const
Definition: vgrid_distribution.hpp:73
void init_global_f0_arrays(const Grid< DeviceType > &grid, const MagneticField< DeviceType > &magnetic_field)
Definition: plasma.hpp:249
Distribution< Device > f0
Species distribution in velocity space on local mesh nodes.
Definition: species.hpp:127
void manage_particle_ownership(int isp, DevicePtlOpt device_ptl_opt)
Definition: plasma.hpp:326
bool is_electron
Whether this species is the electrons.
Definition: species.hpp:79
void f0_set_ptrs(int nnode, double *f0_delta_n_cpp, double *f0_delta_u_cpp, double *f0_delta_T_cpp)
static constexpr bool reduced_deltaf
Equivalent to the preprocessor flag for now.
Definition: plasma.hpp:24
ParticleType
Definition: plasma.hpp:110
bool dynamic_f0
Whether f0 can evolve in time.
Definition: species.hpp:96
void for_one_species(int isp, F func, DevicePtlOpt device_ptl_opt=UseDevicePtl)
Definition: plasma.hpp:175
bool f0_grid() const
Definition: plasma.hpp:202
Definition: velocity_grid.hpp:8
bool particles_d_has_owner
Whether a species owns the device particles allocation.
Definition: plasma.hpp:17
void deallocate_device_ptl()
Definition: plasma.hpp:225
Definition: plasma.hpp:107
View< double **, CLayout, HostType > f0_fg_vth_inv
thermal velocity from f_grid norm. temp. at nodes (to avoid sqrt ops)
Definition: plasma.hpp:45
Definition: NamelistReader.hpp:193
View< double **, CLayout, HostType > f0_fg_T_ev
f_Grid normalization temperature at nodes
Definition: plasma.hpp:44
Definition: magnetic_field.hpp:14
DecomposedRecalculableF0Arrays decomposed_recalculable_f0_arrays
Contains f0 values that are poloidally decomposed but don't need to be transferred between ranks duri...
Definition: plasma.hpp:81
int idx
Index in all_species.
Definition: species.hpp:78
VGridDistribution< HostType > f0_f0g
Definition: plasma.hpp:35
View< double **, CLayout, HostType > f0_flow
Equilibrium flow at nodes.
Definition: plasma.hpp:50
void for_all_nonadiabatic_species(F func, DevicePtlOpt device_ptl_opt=UseDevicePtl)
Definition: plasma.hpp:126
View< double **, CLayout, HostType > f0_grid_vol_vonly
Grid volume (v only) at nodes.
Definition: plasma.hpp:48
Equilibrium equil
The object containing information about the magnetic equilibrium.
Definition: magnetic_field.hpp:46
View< double **, CLayout, HostType > f0_den
Equilibrium density at nodes.
Definition: plasma.hpp:49
bool default_residence_option()
Definition: species.hpp:35
int n_ptl
Number of particles.
Definition: species.hpp:102
int node_offset
Offset of first mesh node belonging to this MPI rank.
Definition: domain_decomposition.hpp:59
std::vector< Species< DeviceType > > all_species
Every particle species in the simulation.
Definition: plasma.hpp:30
void resize_f0_f0g(const DomainDecomposition< DeviceType > &pol_decomp, const VelocityGrid &vgrid)
Definition: plasma.hpp:282
int nnodes
Number of nodes belonging to this MPI rank.
Definition: domain_decomposition.hpp:60
void initialize_global_f0_arrays(const Grid< DeviceType > &grid, const MagneticField< DeviceType > &magnetic_field)
Definition: species.cpp:494
Definition: plasma.hpp:111
Cabana::AoSoA< ParticleDataTypes, Device, VEC_LEN > particles_d
Particles on device.
Definition: species.hpp:106
View< double **, CLayout, HostType > f0_T_ev
Equilibrium temperature at nodes.
Definition: plasma.hpp:43
bool true_for_some_species(F func) const
Definition: plasma.hpp:182
void set_unmanaged_f0_species_view(const T_in &view_in, int isp, T_out &view_out)
Definition: plasma.hpp:275
int particles_d_owner
Which species, if any, owns the device particles allocation.
Definition: plasma.hpp:18
void f0_init_decomposed_ptrs(double *f0_T_ev_cpp, double *f0_fg_T_ev_cpp, double *f0_inv_grid_vol_cpp, double *f0_grid_vol_cpp, double *f0_grid_vol_vonly_cpp, double *f0_den_cpp, double *f0_flow_cpp)
double get_main_ion_toroidal_transit_time(const MagneticField< DeviceType > &magnetic_field) const
Definition: plasma.hpp:347
int largest_n_ptl(bool check_backup)
Definition: plasma.hpp:206
DevicePtlOpt
Definition: plasma.hpp:105
View< double **, CLayout, HostType > f0_delta_T
Flux-surface averaged change of temperature.
Definition: plasma.hpp:86
Definition: plasma.hpp:42
int nspecies
Number of species including electrons.
Definition: plasma.hpp:89
void for_all_species(F func, DevicePtlOpt device_ptl_opt=UseDevicePtl)
Definition: plasma.hpp:117
int n_nonadiabatic_species
Number of nonadiabatic species.
Definition: plasma.hpp:90
View< double **, CLayout, HostType > f0_inv_grid_vol
Inverse grid volume at nodes.
Definition: plasma.hpp:46
void set_f0_f0g_ptr(int f0_inode1, int f0_inode2, double *f0_f0g_loc)
Definition: xgc_io.hpp:24
Definition: plasma.hpp:106
DecomposedRecalculableF0Arrays()
Definition: plasma.hpp:53
double r
Definition: grid_structs.hpp:29
Definition: globals.hpp:85
Kokkos::View< T *, Kokkos::LayoutRight, Device > my_subview(const Kokkos::View< T ****, Kokkos::LayoutRight, Device > &view, int i, int j, int k)
Definition: my_subview.hpp:8
Definition: magnetic_field.F90:1
int n_backup_particles
Definition: species.hpp:124
void for_electrons(F func, DevicePtlOpt device_ptl_opt=UseDevicePtl)
Definition: plasma.hpp:141
View< double **, CLayout, HostType > f0_delta_n
Flux-surface averaged change of density.
Definition: plasma.hpp:84
Definition: plasma.hpp:13
Definition: plasma.hpp:112
void for_all(ParticleType particle_type, F func, DevicePtlOpt device_ptl_opt=UseDevicePtl)
Definition: plasma.hpp:163
bool species_share_particles_d_ownership
Whether to use the device particles sharing scheme.
Definition: plasma.hpp:16
View< double *, CLayout, HostType > f0_node_cost
Definition: plasma.hpp:36
Plasma()
Definition: plasma.hpp:95
Definition: species.hpp:75
void transfer_particles_d_ownership(int isp)
Definition: plasma.hpp:301
View< double **, CLayout, HostType > f0_grid_vol
Grid volume at nodes.
Definition: plasma.hpp:47
View< double **, CLayout, HostType > f0_delta_u
Flux-surface averaged change of parallel flow.
Definition: plasma.hpp:85
std::vector< std::string > sp_names
Definition: plasma.hpp:92
double main_ion_characteristic_energy
Definition: plasma.hpp:26
int nnode
Number of grid nodes.
Definition: grid.hpp:156
RZPair axis
Definition: equil.hpp:86
DecomposedRecalculableF0Arrays(int nsp, const DomainDecomposition< DeviceType > &pol_decomp)
Definition: plasma.hpp:55
bool electrons_are_adiabatic() const
Definition: plasma.hpp:198
bool true_for_all_species(F func) const
Definition: plasma.hpp:190
constexpr double TWOPI
Definition: constants.hpp:9