XGCa
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
plasma.hpp
Go to the documentation of this file.
1 #ifndef PLASMA_HPP
2 #define PLASMA_HPP
3 #include "my_subview.hpp"
4 #include "species.hpp"
5 #include "vgrid_distribution.hpp"
6 
7 extern "C" void f0_init_decomposed_ptrs(double* f0_T_ev_cpp, double* f0_inv_grid_vol_cpp, double* f0_grid_vol_cpp,
8  double* f0_grid_vol_vonly_cpp, double* f0_n_Ta_cpp, double* f0_den_cpp,
9  double* f0_flow_cpp);
10 extern "C" void f0_init_global_arrays(double* f0_den_global, double* f0_temp_global);
11 extern "C" void f0_set_ptrs(int nnode, double* f0_delta_n_cpp, double* f0_delta_u_cpp, double* f0_delta_T_cpp);
12 extern "C" void set_f0_f0g_ptr(int f0_inode1, int f0_inode2, double* f0_f0g_loc);
13 
14 class Plasma{
15 
16  // Variables for managing the device particle memory allocation
20 
21 
22 #ifdef DELTAF_CONV
23  static constexpr bool reduced_deltaf = true;
24 #else
25  static constexpr bool reduced_deltaf = false;
26 #endif
28 
29  public:
30 
31  bool f0_grid;
32 
33  std::vector<Species<DeviceType>> all_species;
34 
35  // Poloidally decomposed f0 values
36  // These will probably become a member of species later, but the fortran code expects
37  // the species to be an array index
39  View<double*,CLayout,HostType> f0_node_cost;
40 
41  private:
42 
43  /* Contains f0 values that are poloidally decomposed but don't need to be transferred between ranks during load rebalancing
44  * */
46  View<double**,CLayout, HostType> f0_T_ev;
47  View<double**,CLayout, HostType> f0_inv_grid_vol;
48  View<double**,CLayout, HostType> f0_grid_vol;
49  View<double**,CLayout, HostType> f0_grid_vol_vonly;
50  View<double**,CLayout, HostType> f0_n_Ta;
51  View<double**,CLayout, HostType> f0_den;
52  View<double**,CLayout, HostType> f0_flow;
53 
55 
57  : f0_T_ev("f0_T_ev", nsp, pol_decomp.nnodes),
58  f0_inv_grid_vol("f0_inv_grid_vol", nsp, pol_decomp.nnodes),
59  f0_grid_vol("f0_grid_vol", nsp, pol_decomp.nnodes),
60  f0_grid_vol_vonly("f0_grid_vol_vonly", nsp, pol_decomp.nnodes),
61  f0_n_Ta("f0_n_Ta", nsp, pol_decomp.nnodes),
62  f0_den("f0_den", nsp, pol_decomp.nnodes),
63  f0_flow("f0_flow", nsp, pol_decomp.nnodes)
64  {
65 #ifndef NO_FORTRAN_MODULES
66  // Fortran arrays are set to point to these Views
68  f0_inv_grid_vol.data(),
69  f0_grid_vol.data(),
70  f0_grid_vol_vonly.data(),
71  f0_n_Ta.data(),
72  f0_den.data(),
73  f0_flow.data());
74 #endif
75  }
76  };
77 
78 
79  public:
80 
82 
83  // Not poloidally decomposed
84  View<double**,CLayout, HostType> f0_delta_n;
85  View<double**,CLayout, HostType> f0_delta_u;
86  View<double**,CLayout, HostType> f0_delta_T;
87 
88  View<double**,CLayout, HostType> f0_den_global;
89  View<double**,CLayout, HostType> f0_temp_global;
90 
91  int nspecies;
93 
94  std::vector<std::string> sp_names;
95 
96  // Constructors
98  : particles_d_has_owner(false),
100  nspecies(0), // Initialize with 0 species
101  n_nonadiabatic_species(0), // Initialize with 0 species
102  f0_grid(true),
103  sp_names{"e", "i", "i2", "i3", "i4", "i5", "i6"}
104  {}
105 
107 
111  };
112 
116  };
117 
118  // Loop over all species
119  template<typename F>
120  inline void for_all_species(F func, DevicePtlOpt device_ptl_opt = UseDevicePtl){
121  for(int isp = 0; isp<all_species.size(); isp++){
122  manage_particle_ownership(isp, device_ptl_opt);
123  func(all_species[isp]);
124  }
125  }
126 
127  // Loop over all non-adiabatic species
128  template<typename F>
129  inline void for_all_nonadiabatic_species(F func, DevicePtlOpt device_ptl_opt = UseDevicePtl){
130  for(int isp = 0; isp<all_species.size(); isp++){
131  if(isp>10) { // ISP ERROR
132  printf("ISP ERROR in for_all_nonadiabatic_sepcies: isp=%d",isp);
133  fflush(stdout);
134  }
135  if(!all_species[isp].is_adiabatic){
136  manage_particle_ownership(isp, device_ptl_opt);
137  func(all_species[isp]);
138  }
139  }
140  }
141 
142  // Loop over electrons
143  template<typename F>
144  inline void for_electrons(F func, DevicePtlOpt device_ptl_opt = UseDevicePtl){
145  for(int isp = 0; isp<all_species.size(); isp++){
146  if(all_species[isp].is_electron){
147  manage_particle_ownership(isp, device_ptl_opt);
148  func(all_species[isp]);
149  }
150  }
151  }
152 
153  // Loop over ions
154  template<typename F>
155  inline void for_all_ions(F func, DevicePtlOpt device_ptl_opt = UseDevicePtl){
156  for(int isp = 0; isp<all_species.size(); isp++){
157  if(!all_species[isp].is_electron){
158  manage_particle_ownership(isp, device_ptl_opt);
159  func(all_species[isp]);
160  }
161  }
162  }
163 
164  // Loop over electrons or ions as specified
165  template<typename F>
166  inline void for_all(ParticleType particle_type, F func, DevicePtlOpt device_ptl_opt = UseDevicePtl){
167  for(int isp = 0; isp<all_species.size(); isp++){
168  if((particle_type==Electrons && all_species[isp].is_electron) ||
169  (particle_type==Ions && !all_species[isp].is_electron)){
170  manage_particle_ownership(isp, device_ptl_opt);
171  func(all_species[isp]);
172  }
173  }
174  }
175 
176  // Operate on one species
177  template<typename F>
178  inline void for_one_species(int isp, F func, DevicePtlOpt device_ptl_opt = UseDevicePtl){
179  manage_particle_ownership(isp, device_ptl_opt);
180  func(all_species[isp]);
181  }
182 
183  int largest_n_ptl(bool check_backup){
184  int max_n_ptl = 0;
185 
186  // Loop over all species
188  if(species.is_electron && check_backup){
189  // Check on backup particles instead, if that's what's getting used
190  max_n_ptl = std::max(max_n_ptl,species.n_backup_particles);
191  } else {
192  // For now, need to access fortran object for n_ptl
193  max_n_ptl = std::max(max_n_ptl,species.n_ptl);
194  }
195  }, NoDevicePtl);
196 
197  return max_n_ptl;
198  }
199 
200  /* Deallocates the device particles and resets ownership tracking variables
201  * */
203  for_all_nonadiabatic_species([&](Species<DeviceType>& species){
204  if(species.owns_particles_d){
205  species.particles_d = Cabana::AoSoA<ParticleDataTypes,DeviceType,VEC_LEN>();
206  species.owns_particles_d = false;
207  }
208  });
209  particles_d_has_owner = false;
210  }
211 
212  static std::vector<MemoryPrediction> estimate_memory_usage(NLReader::NamelistReader& nlr, const Grid<DeviceType> &grid, const DomainDecomposition<DeviceType>& pol_decomp);
213 
214  /* Reallocate and recalculate arrays that are decomposed but recalculated rather than
215  * transferred by the load balance (f0_T_ev etc) */
216  void update_decomposed_f0_calculations(const DomainDecomposition<DeviceType>& pol_decomp,
217  const Grid<DeviceType>& grid,
219  const VelocityGrid& vgrid);
220 
221  private:
222 
223  /* Allocate and calculate global f0 arrays. Should be part of a constructor */
225  // Allocate for all species (even though most simulations don't need it for adiabatic species)
226  f0_delta_n = View<double**,CLayout, HostType>("f0_delta_n", nspecies, grid.nnode);
227  f0_delta_u = View<double**,CLayout, HostType>("f0_delta_u", nspecies, grid.nnode);
228  f0_delta_T = View<double**,CLayout, HostType>("f0_delta_T", nspecies, grid.nnode);
229  // Set all_species unmanaged views
230  for_all_species([&](Species<DeviceType>& species){
231  set_unmanaged_f0_species_view(f0_delta_n, species.idx, species.f0.delta_n_h);
232  set_unmanaged_f0_species_view(f0_delta_u, species.idx, species.f0.delta_u_h);
233  set_unmanaged_f0_species_view(f0_delta_T, species.idx, species.f0.delta_T_h);
234  }, NoDevicePtl);
235 #ifndef NO_FORTRAN_MODULES
236  // Set fortran pointers
237  f0_set_ptrs(grid.nnode, f0_delta_n.data(), f0_delta_u.data(), f0_delta_T.data());
238 #endif
239 
240  // These are constant for the simulation:
241  f0_den_global = View<double**,CLayout, HostType>("f0_den_global", nspecies, grid.nnode);
242  f0_temp_global = View<double**,CLayout, HostType>("f0_temp_global", nspecies, grid.nnode);
243 #ifndef NO_FORTRAN_MODULES
244  // Fortran arrays are set to point to these Views
245  // The calculations are currently done in Fortran too
246  f0_init_global_arrays(f0_den_global.data(), f0_temp_global.data());
247 #endif
248 
249  for_all_species([&](Species<DeviceType>& species){
250  set_unmanaged_f0_species_view(f0_den_global, species.idx, species.f0.den_global_h);
251  set_unmanaged_f0_species_view(f0_temp_global, species.idx, species.f0.temp_global_h);
252 
253  species.calculate_global_f0_arrays(grid, magnetic_field);
254  }, NoDevicePtl);
255  }
256 
257  // Creates an unmanaged view pointing to the subview specified by isp
258  template<typename T_in, typename T_out>
259  void set_unmanaged_f0_species_view(const T_in& view_in, int isp, T_out& view_out){
260  auto view_in_subview = my_subview(view_in, isp);
261  view_out = T_out(view_in_subview.data(), view_in_subview.layout());
262  }
263 
264  public:
265 
266  void resize_f0_f0g(const DomainDecomposition<DeviceType>& pol_decomp, const VelocityGrid& vgrid){
267  // Create new object rather than resizing since we don't need to preserve data
268  f0_f0g = VGridDistribution<HostType>(n_nonadiabatic_species, vgrid, pol_decomp);
269 #ifndef NO_FORTRAN_MODULES
270  int f0_inode1 = pol_decomp.node_offset + 1; // 1-indexed
271  int f0_inode2 = f0_inode1 + pol_decomp.nnodes - 1; // 1-indexed
272  set_f0_f0g_ptr(f0_inode1, f0_inode2, f0_f0g.data());
273 #endif
274 
275  // Set all_species unmanaged views
276  int f0_species_cnt=0;
277  for_all_nonadiabatic_species([&](Species<DeviceType>& species){
278  set_unmanaged_f0_species_view(f0_f0g.f, f0_species_cnt, species.f0.f0g_h);
279  f0_species_cnt++;
280  }, NoDevicePtl);
281  }
282 
283  private:
284 
286  if(!particles_d_has_owner){
287  // Set new owner and initialize with 0 particles
288  particles_d_owner = isp;
289 
290  all_species[particles_d_owner].particles_d = Cabana::AoSoA<ParticleDataTypes,DeviceType,VEC_LEN>("particles_d", 0);
291  all_species[particles_d_owner].owns_particles_d = true;
292  particles_d_has_owner = true;
293  }else{
294  // No-op if species is handing off to itself
295  if(particles_d_owner == isp) return;
296 
297  // Shallow copy to new owner
298  all_species[isp].particles_d = all_species[particles_d_owner].particles_d;
299 
300  // Delete original
301  all_species[particles_d_owner].particles_d = Cabana::AoSoA<ParticleDataTypes,DeviceType,VEC_LEN>();
302  all_species[particles_d_owner].owns_particles_d = false;
303 
304  // Set new owner
305  particles_d_owner = isp;
306  all_species[particles_d_owner].owns_particles_d = true;
307  }
308  }
309 
310  void manage_particle_ownership(int isp, DevicePtlOpt device_ptl_opt){
311  if((!all_species[isp].is_adiabatic) && device_ptl_opt==UseDevicePtl){
312  if(species_share_particles_d_ownership){
313  transfer_particles_d_ownership(isp);
314  }else{
315  if(!all_species[isp].owns_particles_d){
316  all_species[isp].particles_d = Cabana::AoSoA<ParticleDataTypes,DeviceType,VEC_LEN>("particles_d", 0);
317  all_species[isp].owns_particles_d = true;
318  }
319  }
320 
321  // Resize device particles if they are used
322  all_species[isp].resize_device_particles();
323  }
324  }
325 
326  public:
327  void validate_f0_checkpoint_file_dims(const XGC_IO_Stream& stream, const Grid<DeviceType>& grid, const VelocityGrid& vgrid);
328  void write_checkpoint_files(const Grid<DeviceType>& grid, const DomainDecomposition<DeviceType>& pol_decomp, const XGC_IO_Stream& stream, const XGC_IO_Stream& f0_stream);
329  void read_checkpoint_files(const Grid<DeviceType>& grid, const VelocityGrid& vgrid, const DomainDecomposition<DeviceType>& pol_decomp, const XGC_IO_Stream& stream, const XGC_IO_Stream& f0_stream, bool n_ranks_is_same, int version);
330 
332  double main_ion_mass = all_species[MAIN_ION].mass;
333  double axis_length = TWOPI * magnetic_field.equil.axis_r;
334  double characteristic_velocity = sqrt(2*main_ion_characteristic_energy/main_ion_mass);
335  return axis_length / characteristic_velocity;
336  }
337 };
338 
339 #endif
void calculate_global_f0_arrays(const Grid< DeviceType > &grid, const MagneticField< DeviceType > &magnetic_field)
Definition: species.cpp:453
void for_all_ions(F func, DevicePtlOpt device_ptl_opt=UseDevicePtl)
Definition: plasma.hpp:155
bool owns_particles_d
Whether the species owns the device particle allocation right now.
Definition: species.hpp:102
double * data() const
Definition: vgrid_distribution.hpp:73
void init_global_f0_arrays(const Grid< DeviceType > &grid, const MagneticField< DeviceType > &magnetic_field)
Definition: plasma.hpp:224
View< double **, CLayout, HostType > f0_den_global
Equilibrium density at vertices.
Definition: plasma.hpp:88
Distribution< Device > f0
Species distribution in velocity space on local mesh nodes.
Definition: species.hpp:121
void manage_particle_ownership(int isp, DevicePtlOpt device_ptl_opt)
Definition: plasma.hpp:310
bool is_electron
Whether this species is the electrons.
Definition: species.hpp:79
void f0_set_ptrs(int nnode, double *f0_delta_n_cpp, double *f0_delta_u_cpp, double *f0_delta_T_cpp)
static constexpr bool reduced_deltaf
Equivalent to the preprocessor flag for now.
Definition: plasma.hpp:25
ParticleType
Definition: plasma.hpp:113
void for_one_species(int isp, F func, DevicePtlOpt device_ptl_opt=UseDevicePtl)
Definition: plasma.hpp:178
View< double **, CLayout, HostType > f0_temp_global
Equilibrium temperature at vertices.
Definition: plasma.hpp:89
Definition: velocity_grid.hpp:8
bool particles_d_has_owner
Whether a species owns the device particles allocation.
Definition: plasma.hpp:18
void deallocate_device_ptl()
Definition: plasma.hpp:202
Definition: plasma.hpp:110
Definition: NamelistReader.hpp:193
Definition: magnetic_field.hpp:12
DecomposedRecalculableF0Arrays decomposed_recalculable_f0_arrays
Contains f0 values that are poloidally decomposed but don&#39;t need to be transferred between ranks duri...
Definition: plasma.hpp:81
int idx
Index in all_species.
Definition: species.hpp:78
VGridDistribution< HostType > f0_f0g
Definition: plasma.hpp:38
bool f0_grid
Definition: plasma.hpp:31
View< double **, CLayout, HostType > f0_flow
Equilibrium flow at nodes.
Definition: plasma.hpp:52
void for_all_nonadiabatic_species(F func, DevicePtlOpt device_ptl_opt=UseDevicePtl)
Definition: plasma.hpp:129
View< double **, CLayout, HostType > f0_grid_vol_vonly
Grid volume (v only) at nodes.
Definition: plasma.hpp:49
Equilibrium equil
The object containing information about the magnetic equilibrium.
Definition: magnetic_field.hpp:32
View< double **, CLayout, HostType > f0_den
Equilibrium density at nodes.
Definition: plasma.hpp:51
bool default_residence_option()
Definition: species.hpp:35
int n_ptl
Number of particles.
Definition: species.hpp:96
int node_offset
Offset of first mesh node belonging to this MPI rank.
Definition: domain_decomposition.hpp:55
std::vector< Species< DeviceType > > all_species
Every particle species in the simulation.
Definition: plasma.hpp:33
void resize_f0_f0g(const DomainDecomposition< DeviceType > &pol_decomp, const VelocityGrid &vgrid)
Definition: plasma.hpp:266
int nnodes
Number of nodes belonging to this MPI rank.
Definition: domain_decomposition.hpp:56
Definition: plasma.hpp:114
Cabana::AoSoA< ParticleDataTypes, Device, VEC_LEN > particles_d
Particles on device.
Definition: species.hpp:100
View< double **, CLayout, HostType > f0_T_ev
Equilibrium temperature at nodes.
Definition: plasma.hpp:46
void set_unmanaged_f0_species_view(const T_in &view_in, int isp, T_out &view_out)
Definition: plasma.hpp:259
int particles_d_owner
Which species, if any, owns the device particles allocation.
Definition: plasma.hpp:19
double axis_r
r coordinate of axis
Definition: equil.hpp:89
double get_main_ion_toroidal_transit_time(const MagneticField< DeviceType > &magnetic_field) const
Definition: plasma.hpp:331
void f0_init_global_arrays(double *f0_den_global, double *f0_temp_global)
int largest_n_ptl(bool check_backup)
Definition: plasma.hpp:183
DevicePtlOpt
Definition: plasma.hpp:108
View< double **, CLayout, HostType > f0_delta_T
Flux-surface averaged change of temperature.
Definition: plasma.hpp:86
int nspecies
Number of species including electrons.
Definition: plasma.hpp:91
void for_all_species(F func, DevicePtlOpt device_ptl_opt=UseDevicePtl)
Definition: plasma.hpp:120
int n_nonadiabatic_species
Number of nonadiabatic species.
Definition: plasma.hpp:92
View< double **, CLayout, HostType > f0_inv_grid_vol
Inverse grid volume at nodes.
Definition: plasma.hpp:47
void set_f0_f0g_ptr(int f0_inode1, int f0_inode2, double *f0_f0g_loc)
Definition: xgc_io.hpp:24
Definition: plasma.hpp:109
DecomposedRecalculableF0Arrays()
Definition: plasma.hpp:54
Definition: globals.hpp:85
Kokkos::View< T *, Kokkos::LayoutRight, Device > my_subview(const Kokkos::View< T ****, Kokkos::LayoutRight, Device > &view, int i, int j, int k)
Definition: my_subview.hpp:8
Definition: magnetic_field.F90:1
int n_backup_particles
Definition: species.hpp:118
void for_electrons(F func, DevicePtlOpt device_ptl_opt=UseDevicePtl)
Definition: plasma.hpp:144
View< double **, CLayout, HostType > f0_n_Ta
Equilibrium n_Ta at nodes.
Definition: plasma.hpp:50
View< double **, CLayout, HostType > f0_delta_n
Flux-surface averaged change of density.
Definition: plasma.hpp:84
Definition: plasma.hpp:14
Definition: plasma.hpp:115
void for_all(ParticleType particle_type, F func, DevicePtlOpt device_ptl_opt=UseDevicePtl)
Definition: plasma.hpp:166
bool species_share_particles_d_ownership
Whether to use the device particles sharing scheme.
Definition: plasma.hpp:17
View< double *, CLayout, HostType > f0_node_cost
Definition: plasma.hpp:39
Plasma()
Definition: plasma.hpp:97
Definition: species.hpp:75
void transfer_particles_d_ownership(int isp)
Definition: plasma.hpp:285
View< double **, CLayout, HostType > f0_grid_vol
Grid volume at nodes.
Definition: plasma.hpp:48
View< double **, CLayout, HostType > f0_delta_u
Flux-surface averaged change of parallel flow.
Definition: plasma.hpp:85
std::vector< std::string > sp_names
Definition: plasma.hpp:94
double main_ion_characteristic_energy
Definition: plasma.hpp:27
int nnode
Number of grid nodes.
Definition: grid.hpp:190
void f0_init_decomposed_ptrs(double *f0_T_ev_cpp, double *f0_inv_grid_vol_cpp, double *f0_grid_vol_cpp, double *f0_grid_vol_vonly_cpp, double *f0_n_Ta_cpp, double *f0_den_cpp, double *f0_flow_cpp)
DecomposedRecalculableF0Arrays(int nsp, const DomainDecomposition< DeviceType > &pol_decomp)
Definition: plasma.hpp:56
constexpr double TWOPI
Definition: constants.hpp:9