XGCa
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
globals.hpp
Go to the documentation of this file.
1 #ifndef GLOBALS_HPP
2 #define GLOBALS_HPP
3 #include <limits.h>
4 #include <string>
5 #include <cassert>
6 #include "space_settings.hpp"
7 #include "array_deep_copy.hpp"
8 #include "access_add.hpp"
9 #include "simd.hpp"
10 #ifdef USE_MPI
11 #include "my_mpi.hpp"
12 #endif
13 #include "constants.hpp"
14 
15 /* Returns max number of omp threads, or 1 if no omp
16  */
17 inline int get_num_cpu_threads(){
18 #ifdef USE_OMP
19  return omp_get_max_threads();
20 #else
21  return 1;
22 #endif
23 }
24 
25 /* Return true if MPI rank is zero
26  * */
27 inline bool is_rank_zero(){
28 #ifdef USE_MPI
29  return SML_COMM_RANK==0;
30 #else
31  return true;
32 #endif
33 }
34 
35 /* Safely abort and exit the code
36  * */
37 inline void exit_XGC(std::string msg){
38  printf("%s",msg.c_str());
39  fflush(stdout);
40 #ifdef USE_MPI
41  MPI_Abort(SML_COMM_WORLD, 1);
42 #else
43  exit(1);
44 #endif
45 }
46 
47 /* Asserts condition
48  * (Callable from Device)
49  * (C++ has no standardized assert with a message)
50  * */
51 KOKKOS_INLINE_FUNCTION void assert_XGC(bool cond, const char* msg){
52  if(!cond){
53  DEVICE_PRINTF("%s",msg);
54  assert(false);
55  }
56 }
57 
58 /* Check that two integers multiplied together doesn't cause an overflow
59  * */
60 inline bool causes_multiplication_overflow(int a,int b){
61  int c = a*b;
62  if(b==0) return false; // No overflow
63  return !(c/b == a);
64 }
65 
66 /* Check that two integers added together doesn't cause an overflow
67  * */
68 inline bool causes_addition_overflow(int a,int b){
69  if ( ((b > 0) && (a > INT_MAX - b)) // a + b would overflow
70  ||((b < 0) && (a < INT_MIN - b)) ){ // a + b would underflow
71  return true;
72  } else {
73  return false;
74  }
75 }
76 
77 enum class Order{
78  Zero,
79  One,
80  Two
81 };
82 
84  ELECTRON = 0,
86 };
87 
88 enum KinType{
91 };
92 
93 /* PhiInterpType specifies whether the field uses two values in order to interpolate in the phi direction
94  * */
95 enum class PhiInterpType{
96  Planes,
97  None
98 };
99 
100 // Eventually, nearly the entire code will be templated on PhiInterpType, which is XGC1 vs XGCa
101 // As an intermediate step, it is convenient to specify the template in one global location
102 #ifdef XGC1
104 #else
106 #endif
107 
108 /* What type of marker weight algorithm to use, reduced delta-f or total-f
109  */
110 enum class MarkerType{
112  FullF,
113  TotalF,
114  None
115 };
116 enum class FAnalyticShape{
117  Maxwellian,
118  SlowingDown,
119  None
120 };
121 enum class WeightEvoEq{
122  Direct,
123  PDE,
124  None
125 };
126 #ifdef DELTAF_CONV
128 #else
130 #endif
131 
132 /* Whether to use cylindrical limit geometry with periodic boundary function
133  */
134 enum class GeometryType{
135  Toroidal,
137 };
138 #ifdef CYLINDRICAL
140 #else
142 #endif
143 
153 template<GeometryType GT>
154 KOKKOS_INLINE_FUNCTION double geometry_switch(double a, double b);
155 
156 template<>
157 KOKKOS_INLINE_FUNCTION double geometry_switch<GeometryType::Toroidal>(double a, double b){
158  return a;
159 }
160 
161 template<>
162 KOKKOS_INLINE_FUNCTION double geometry_switch<GeometryType::CylindricalLimit>(double a, double b){
163  return b;
164 }
165 
166 
170 template<GeometryType GT>
171 KOKKOS_INLINE_FUNCTION constexpr bool use_toroidal_terms();
172 
173 template<>
174 KOKKOS_INLINE_FUNCTION constexpr bool use_toroidal_terms<GeometryType::CylindricalLimit>(){
175  return 0;
176 }
177 
178 template<>
179 KOKKOS_INLINE_FUNCTION constexpr bool use_toroidal_terms<GeometryType::Toroidal>(){
180  return 1;
181 }
182 
183 /***/
184 
186  PIR = 0,
187  PIZ,
188  PIP,
193 };
194 
196  PIM = 0,
199 #ifdef PTL_G2
200  PIG2,
201 #endif
203 };
204 
205 // Divide two integers, then round up
206 KOKKOS_INLINE_FUNCTION int divide_and_round_up(int a, int b){
207  return (a+b-1)/b;
208 }
209 
210 // Positive modulo. i.e. positive_modulo(-1,3) will return 2, whereas (-1)%3 returns -1.
211 KOKKOS_INLINE_FUNCTION unsigned positive_modulo( int value, unsigned m) {
212  int mod = value % (int)m;
213  if (mod < 0) {
214  mod += m;
215  }
216  return mod;
217 }
218 
219 /* Returns the offset of an evenly distributed set of objects into even subsets. If the set can be distributed evenly,
220  * then this operation is simply the local subset times the result of the division. If not, then the first k
221  * subsets will have one extra object, where k is the remainder.
222  *
223  * n_obj is the number of objects that need to be divided
224  * n_subsets is the number of ranks the objects are being divided into
225  * i_subset is the index of this particular subset
226  *
227  */
228 inline long long int offsets_of_even_distribution(long long int n_obj, long long int n_subsets, long long int i_subset){
229  long long int obj_per_subset = n_obj/n_subsets;
230  long long int remainder = n_obj%n_subsets;
231  if (i_subset<remainder){
232  obj_per_subset += 1;
233  return i_subset*obj_per_subset;
234  }else{
235  return i_subset*obj_per_subset + remainder;
236  }
237 }
238 
239 /* Returns the count of an evenly distributed set of objects into even subsets. If the set can be distributed evenly,
240  * then this operation is simply the result of the division. If not, then the first k
241  * subsets will have one extra object, where k is the remainder.
242  *
243  * n_obj is the number of objects that need to be divided
244  * n_subsets is the number of ranks the objects are being divided into
245  * i_subset is the index of this particular subset
246  *
247  */
248 inline long long int counts_of_even_distribution(long long int n_obj, long long int n_subsets, long long int i_subset){
249  long long int obj_per_subset = n_obj/n_subsets;
250  long long int remainder = n_obj%n_subsets;
251  if (i_subset<remainder){
252  obj_per_subset += 1;
253  }
254  return obj_per_subset;
255 }
256 
257 // Converts integer to string and adds leading zeros
258 inline std::string formatted_int2str(int input, int n_digits){
259  std::string string_no_leading = std::to_string(input); // no leading zeros
260 
261  int initial_length = string_no_leading.length();
262  int zeros_to_add = n_digits - std::min(n_digits, initial_length);
263 
264  // Add leading zeros
265  return std::string(zeros_to_add, '0') + string_no_leading;
266 }
267 
268 // is_same_type is equivalent to std::is_same, but can be used in cuda kernels
269 template<class T, class U> struct is_same_type{static constexpr bool val=false;};
270 template<class T > struct is_same_type<T, T>{static constexpr bool val=true;};
271 
272 // Defined and initialized in my_mpi.cpp, reset in sml.tpp
273 extern bool global_debug_flag;
274 extern bool global_perf_barriers_flag;
275 
276 #endif
Definition: globals.hpp:84
Magnetic moment mu.
Definition: globals.hpp:196
KOKKOS_INLINE_FUNCTION int divide_and_round_up(int a, int b)
Definition: globals.hpp:206
constexpr GeometryType GEOMETRY
Definition: globals.hpp:141
bool is_rank_zero()
Definition: globals.hpp:27
MarkerType
Definition: globals.hpp:110
gyroradius
Definition: globals.hpp:189
MPI_Comm SML_COMM_WORLD
Definition: my_mpi.cpp:4
long long int counts_of_even_distribution(long long int n_obj, long long int n_subsets, long long int i_subset)
Definition: globals.hpp:248
#define DEVICE_PRINTF(...)
Definition: space_settings.hpp:86
Definition: globals.hpp:89
W0.
Definition: globals.hpp:197
bool causes_multiplication_overflow(int a, int b)
Definition: globals.hpp:60
Definition: globals.hpp:192
bool global_debug_flag
Definition: checkpoint.cpp:11
Definition: globals.hpp:269
bool global_perf_barriers_flag
Definition: checkpoint.cpp:12
KOKKOS_INLINE_FUNCTION unsigned positive_modulo(int value, unsigned m)
Definition: globals.hpp:211
PhiInterpType
Definition: globals.hpp:95
FAnalyticShape
Definition: globals.hpp:116
r coordinate
Definition: globals.hpp:186
Order
Definition: globals.hpp:77
constexpr PhiInterpType PIT_GLOBAL
Definition: globals.hpp:105
std::string formatted_int2str(int input, int n_digits)
Definition: globals.hpp:258
Definition: globals.hpp:202
Definition: globals.hpp:90
ParticlePhase
Definition: globals.hpp:185
2nd weight
Definition: globals.hpp:191
int SML_COMM_RANK
Definition: my_mpi.cpp:5
KinType
Definition: globals.hpp:88
GeometryType
Definition: globals.hpp:134
KOKKOS_INLINE_FUNCTION double geometry_switch(double a, double b)
Definition: globals.hpp:85
void exit_XGC(std::string msg)
Definition: globals.hpp:37
F0.
Definition: globals.hpp:198
int get_num_cpu_threads()
Definition: globals.hpp:17
phi coordinate
Definition: globals.hpp:188
static constexpr bool val
Definition: globals.hpp:269
KOKKOS_INLINE_FUNCTION constexpr bool use_toroidal_terms()
1st weight
Definition: globals.hpp:190
ParticleConsts
Definition: globals.hpp:195
z coordinate
Definition: globals.hpp:187
long long int offsets_of_even_distribution(long long int n_obj, long long int n_subsets, long long int i_subset)
Definition: globals.hpp:228
WeightEvoEq
Definition: globals.hpp:121
SpeciesType
Definition: globals.hpp:83
constexpr MarkerType MT_GLOBAL
Definition: globals.hpp:129
bool causes_addition_overflow(int a, int b)
Definition: globals.hpp:68
KOKKOS_INLINE_FUNCTION void assert_XGC(bool cond, const char *msg)
Definition: globals.hpp:51