XGCa
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
Data Types | Public Member Functions | Public Attributes | Private Attributes | List of all members
resamp_module Module Reference
Collaboration diagram for resamp_module:
Collaboration graph
[legend]

Data Types

type  resamp_bin_type
 

Public Member Functions

subroutine set_cce_buffer_id (id, inode1, inode2)
 
subroutine set_cce_buffer_and_overlap_id (id1, id2, inode1, inode2)
 
subroutine resample_init (grid, inode1, inode2, dsmu, dvp, nmu, nvp, vp_max, mu_max, tile_size, bins, cce_sync_sendrcv)
 This routine initializes the resampling module and sets some global parameters such as v-grid size, etc. More...
 
subroutine resample_finalize (bins)
 This routine cleans up the resampling module. More...
 
subroutine resample_spall_setup (inode1, inode2, dsmu, dvp, nmu, nvp, vp_max, mu_max, cce_sync_sendrcv, tile_size)
 Resample the marker particles in XGC to improve phase-space coverage and reduce marker noise. More...
 
subroutine set_eq_bins (eq_bin, ineq_bin)
 
subroutine use_default_eq_bins ()
 
subroutine resample_one_sp (isp, cce_sync_sendrcv)
 Resample the marker particles of one species in XGC to improve phase-space coverage and reduce marker noise. More...
 
subroutine transpose_from_aos_wrapper (isp)
 
subroutine resample_spall_finish ()
 
subroutine build_bins (sp, bins, grid, cce_sync)
 Loops over particles, puts them in the appropriate bin, computes partial mean This routine sorts particles in the appropriate phase-space bin and computes the total charge in the bin. More...
 
subroutine add_to_bin (bin, ptli, ind)
 Adds the data of one particle to a phase-space bin. More...
 
subroutine destroy_bins (bins)
 Cleans up bin memory without deallocating the array of bins itself (can be kept for next species) More...
 
subroutine update_cmat (grid, psn, nconstraint, nptl, vert, patch, bary, tri, psi, B, bvec, spec, pindex, part, Cmat, op_mode)
 This subroutine sets up the matrix C (constraint matrix) with the coefficients needed to compute the conserved quantities charge, parallel momentum, magnetic moment, parallel and perp. kinetic energy and the grid charge on the vertices connected to the bin. Those quantities are then obtained by multiplying the matrix C with the delta-f (–> w1) weight vector from the right. This matrix forms the basis for the QP optimization program that finds the delta-f weights for the resampled particle set. More...
 
subroutine check_bin (bin, sp, cce_sync_sendrcv, resamp_auto_upsample_loc, resamp_auto_downsample_loc, resamp_var_resample_loc, outside_bin)
 This routine checks whether a bin needs to be resampled and determines the type of resampling (up-/down-/re-sampling). The chosen resampling option is stored in the bin data structure: 0) No resampling needed 1) Resampling due to high weight variance 2) Upsampling due to low particle count 3) Downsampling due to high particle count. More...
 
subroutine resample_bin (bin, grid, sp, psn, cce_sync_sendrcv, start_wr_pos, resamp_failed_bins_loc, resamp_upsample_failed_loc, resamp_downsample_failed_loc, resamp_resample_failed_loc, resamp_retried_bins_loc, resamp_retried_failed_loc, resamp_fullf_failed_loc, resamp_phvol_added_loc, resamp_var_inc_upsamp_loc, resamp_var_inc_downsamp_loc, dump_problem_bins, resamp_var_inc_loc, resamp_up_hist_loc, resamp_down_hist_loc)
 The actual process of resampling the particle set in a bin happens in this routine. A bin is passed as input, the pre-determined type of resampling is executed and the weights of the new particle set are computed with a QP optimization. If the optimization is successful, the old particle set in the input variable "sp" is replaced with the new particle set. More...
 
subroutine load_new_ptl (grid, new_ptl, bin_id, itr, p, psi)
 This routine loads new particles into a bin with uniform marker density in configuration space. Particles are drawn from a rectacngle enclosing the bin volume and are accepted if inside the Voronoi volume of the bin. A more efficient loading can be achieved by pre-selecting the triangle in which to load. This functionality will be provided in a separate function. More...
 
subroutine load_shift_p_ptl (grid, new_ptl, itr, p, psi, my_node, max_shift)
 
subroutine setup_fullf (ptli, spec_type, den, flow, temp_ev, bvec, B, psi)
 Placeholder routine for velocity space shift, may not be implemented. More...
 
subroutine get_new_fullf_weight (grid, psn, part, psi, B, flow, den, temp_ev, spec, tri, bary, mark_den, err)
 This routine loads new particles into a bin with uniform marker density in configuration space. Particles are drawn from the bin volume. First, a triangle is chosen using importance sampling with the triangle area as criterion. Then a random position in the triangle is drawn. The drawn position is accepted if inside the Voronoi volume of the bin. More...
 
subroutine setup_opt (nconstraint, part_num, Cmat, constraint, weights, n_eq_bin, n_ineq_bin, eq_bin, ineq_bin, grid_ineq_on, ineq_tol, positivity, ierr)
 This routine sets up the input for the QP optimization that computes the delta-f weights of the new particles. There are two types of constraints, bin and grid constraints. Bin constraints correspond to moments of the distribution function evaluated with nearest neighbor interpolation on the configuration space grid. Grid constraints correspond to moments evaluated with linear (barycentric) interpolation on the conf. space grid. Bin constraints can be enforced as equality and inequality constraints: use idx_constraint and idx_constraint2 to choose which constraint is an equality and which is an inequality constraint. Grid constraints are enforced as inequality constraints. Since grid constraints make the optimization problem much harder due to their large number, using them is optional (grid_ineq_on) A positivity constraint for the weights can be activated with the variable "positivity". This is used for full-f optimization. More...
 
subroutine restart_resample_set_params ()
 Move phase space density from the 5D grid over to the particles for restarting simulatin with a different grid. More...
 
subroutine restart_resample_restore_params ()
 Move phase space density from the 5D grid over to the particles for restarting simulatin with a different grid. More...
 
subroutine get_marker_velo (grid, psn, ptli, isp, velo, vrad)
 Evaluates the marker particle equations of motion. The results are the time derivatives of the marker position and parallel velocity (or rho, to be precise), as well as the radial velocity v.grad(psi). The results can be used in the moment preserving QP weight optimization. More...
 
subroutine get_sampling_ratio (grid)
 This routine upsamples the marker population in spall for a new configuration space grid. The new grid should be denser than the current grid, i.e. require upsampling, not downsampling. This is due to particle data locality. Upsampling to a denser mesh is done on the coarse mesh, while downsampling from a fine mesh is better done with particle data arranged for the coarse mesh. The routine reads in the vertex positions of the new mesh and runs a search for each of them to associate them with the vertices of the current mesh. The ratio of new mesh vertices per current mesh vertex is the upsampling ratio. If the upsampling ratio is smaller than unity, that vertex is skipped. More...
 
subroutine resamp_scale_phvol (grid, sp)
 Loops over particles and scales their phase space volume to account for particles added to empty bins. More...
 
subroutine f0_upsampling_set_params ()
 set parameters for f0 upsampling More...
 
subroutine f0_upsampling_restore_params ()
 restore parameters after f0 upsampling More...
 
integer function cce_do_resampling (idbuf)
 
integer function cce_buffer_sndrcvs_accessor (idbuf)
 
integer function get_cce_buffer_nb ()
 
subroutine set_cce_buffers (istep, idbuf)
 
subroutine cce_reset_particle_outside (grid, sp)
 
subroutine cce_buffer_snd_updated_bins (isp)
 
subroutine cce_buffer_rcv_updated_bins (isp)
 
logical function is_first_call ()
 
subroutine nrm_std_dev (npart, mean, weights, var)
 
subroutine output_bin (npnew, nconst, sp, bin, Cmat, constraint, bin_new_ptl, new_tri, new_psi, ierr, dump_problem_bins, weights)
 Routine for outputting a flagged resampling bin. This is typically due to either the failure of the quadratic program OR a high variance result, and is controlled by the input flag resamp_output_problem_bins. More...
 
subroutine get_v_part (smu_n, vp_n, mu, rho, temp, B, spec)
 This subroutine returns particle velocities given normalized v-grid coordinates. More...
 
subroutine poisson_disc (initial, corners, bin_part, bin_target, new_set, k)
 
logical function in_neighborhood (point, indices, grid, new_set, cellsize, radius_squared)
 
logical function in_bin (point, corners)
 
subroutine get_v_n (smu_n, vp_n, B, temp_ev, part, spec)
 This subroutine returns normalized v-grid coordinates for a particle. More...
 
subroutine get_refer_v_n (smu_n, vp_n, smu_ref, vp_ref, bin_id, err)
 This subroutine returns reference velocity coordinates in the resampling bin. More...
 
real(kind=8) function,
dimension(2, 2) 
local_lin_int (smu_ref, vp_ref)
 This function returns the 2x2 local element matrix of bilinear nodal interpolation coefficients corresponding to the particles reference coordinates in the cell. More...
 
subroutine find_bin (smu_n, vp_n, imu, ivp)
 This subroutine returns the v-grid bin a particle is in given its normalized coordinates, including high velocity bins. More...
 
subroutine refer_to_v_n (smu_ref, vp_ref, smu_n, vp_n, bin_id)
 This subroutine maps reference coordinates to normalized coordinates. More...
 
subroutine particle_not_in_vbin (smu_ref, vp_ref, smu_n, vp_n, bin, part, num_part, index, rtemp, B, b_grid)
 This subroutine is error handling for when a particle(usually generated) does not like in the correct velocity space bin. More...
 

Public Attributes

integer resamp_rate = 2
 timesteps between subsequent resamples, placedholder, in practice ~ sml_f_source_period More...
 
real(8) resamp_var = 1D4
 threshold for relative standard deviation in bin for auto-resample More...
 
real(8) resamp_min_ratio = 0.5D0
 min ratio of (# of ptl)/(target # of ptl) in bin for auto-upsample More...
 
real(8) resamp_max_ratio = 1.5D0
 max ratio of (# of ptl)/(target # of ptl) in bin for auto-downsample More...
 
integer resamp_max_target = 4
 Overrides the number of constraints in determining the target # of ptl of a bin. More...
 
integer resamp_tile_size = 2
 Bin size on the velocity space grid in cells (not vertices) (input parameter) More...
 
integer resamp_tile_size_now = 2
 Used to override resamp_tile_size. More...
 
real(8) resamp_ineq_tol = 1D-4
 Threshold for relative error in the inequality constraints in the QP optimization. More...
 
logical resamp_restart = .false.
 Perform resampling before dumping the final restart file. More...
 
logical resamp_retry = .false.
 Retry QP optimization for failed bins with relaxed inequality constraints. More...
 
real(8) resamp_ineq_tol_max = 1D-3
 Maximal threshold for relative error in inequality constraints for retried bins. More...
 
real(8) resamp_highv_max = 10D0
 energy cutoff of the high velocity bins v_para>f0_vp_max and v_perp>f0_smu_max More...
 
real(8) resamp_highv_max_ratio = 4D0
 Downsampling threshold for high-velocity bins. More...
 
real(8) resamp_var_limit = 3D0
 Increase in relative bin variance for flagging for possible rejection. More...
 
logical resamp_discard_var_bins = .false.
 Discard resampled bins that increase the variance by factor of resamp_var_limit. More...
 
logical resamp_keep_upsamples = .false.
 Retain upsampling results with high variance, for filling for pseudoinverse. Only relevant if resamp_discard_var_bins is .true. More...
 
logical resamp_keep_downsamples = .false.
 Retain downsampling results with high variance, mainly for preventing buildup. Only relevant if resamp_discard_var_bins is .true. More...
 
character(len=200) resamp_node_file = 'dum.node'
 File containing the vertex positions of the mesh for which to resample. More...
 
integer resamp_nphi_new =1
 Number of poloidal planes in simulation with new mesh. More...
 
logical resamp_restart_read =.false.
 Whether to read a restart file written from a simulation with different grid. More...
 
logical resamp_fill_empty =.false.
 Whether to fill empty bins. More...
 
logical resamp_fullf_on =.false.
 Whether to resample the full-f weights in addition to delta-f weights. More...
 
logical resamp_grid_ineq_on =.false.
 Switch for using inequality constraints for the grid charge for resampling. More...
 
logical resamp_distribute_evenly_subbins =.false.
 Whether to fill/remove evenly in 1x1 velocity cells in the bin when resamp_tile_size > 1 and upsampling/downsampling. More...
 
logical resamp_fill_empty_subbins =.false.
 Whether to fill all empty 1x1 velocity cells in the bin and there are already particles in the bin. More...
 
logical resamp_fill_empty_subbins_skip_full_bins
 If resamp_fill_empty_subbins=.true., skip a bin if it is already filled enough to do the pseudo-inverse interpolation. More...
 
integer resamp_fill_empty_subbins_target =1
 If resamp_fill_empty_subbins=.true., minimum target of sub bins. More...
 
integer resamp_fill_empty_subbins_corner_cell_target =1
 If resamp_fill_empty_subbins=.true., minimum target of corner cells. More...
 
logical resamp_output_problem_bins =.false.
 Switch to output failed or high-variance bins as to .bp files. More...
 
character(16) resamp_up_choice ='random'
 option arg for upsampled new particle selection: 'random','copy','poisson' currently added random: random velocity coordinates for new particles in bin copy: add new particles as copies of old particles with largest absolute w0*w1 weight poision: add new particles as poisson disc samples generated from the old particle set. More...
 
character(16) resamp_down_choice ='weight'
 option arg for downsampled new particle selection: 'random','weight','weight+replace','volume' weight: keep particles with largest w0*w1 absolute weight, deterministic weight+replace: keep particles with largest w0*w1 absolute weight, allow multiple copies of same particle if split weight is still larger than next unsplit particle volume: keep particles with largest phase space volume, deterministic More...
 
real(kind=8) resamp_max_shift = 1D-1
 maximum shift in local coordinates for 'copy', 'weight+replace' More...
 
integer, dimension(:,:),
allocatable 
resamp_patches
 !< node numbers of vertices contained in triangle patch of voronoi cell More...
 
integer, dimension(:), allocatable resamp_patch_size
 total number of patch vertices in Voronoi cell More...
 
real(kind=8), dimension(:,:),
allocatable 
resamp_patch_rzdims
 R-Z boundaries of the Voronoi-triangle patch. More...
 
integer cce_buffer_id
 Index of currently resampled buffer. More...
 
integer cce_buffer_first_node
 
integer cce_buffer_last_node
 node interval of current buffer More...
 
integer cce_grid_nnode
 Number of node on the grid. More...
 
integer, parameter cce_nbconstraint =5
 
real(kind=8), dimension(:,:,:,:,:,:),
allocatable 
fbins
 
integer cce_inode1
 
integer cce_inode2
 
logical cce_skip_nodes
 
type(ptl_type), dimension(:),
allocatable, target 
local_particles
 
type(resamp_bin_type),
dimension(:,:,:), allocatable 
resamp_bins
 
logical tmp_resamp_fill_empty
 
logical tmp_resamp_retry
 
logical tmp_resamp_fullf_on
 
logical tmp_resamp_grid_ineq_on
 
logical tmp_resamp_fill_empty_subbins
 
logical tmp_resamp_distribute_evenly_subbins
 
logical tmp_resamp_fill_empty_subbins_skip_full_bins
 
real(8) tmp_resamp_var
 
real(8) tmp_resamp_min_ratio
 
real(8) tmp_resamp_max_ratio
 
integer tmp_resamp_tile_size
 
integer tmp_resamp_max_target
 
real(8) tmp_resamp_ineq_tol
 
real(8) tmp_resamp_ineq_tol_max
 
real(8) tmp_resamp_highv_max
 
real(8) tmp_resamp_highv_max_ratio
 
character(len=200) tmp_resamp_node_file
 
integer tmp_resamp_nphi_new
 
integer tmp_resamp_fill_empty_subbins_target
 
integer tmp_resamp_fill_empty_subbins_corner_cell_target
 
character(len=16) tmp_up_choice
 
character(len=16) tmp_down_choice
 

Private Attributes

real(kind=8), private resamp_bin_max_fac
 threshold for auto downsample More...
 
real(kind=8), private resamp_inv_bin_num
 Inverse of the number of macro bins in v-space. More...
 
integer, private resamp_nmu_in
 Number of cells on original vperp/mu grid (=f0_nmu) More...
 
integer, private resamp_nvp_in
 Number of cells on original v_para grid (=f0_nvp) More...
 
real(kind=8), private resamp_dsmu
 v_perp/mu spacing of original v-grid (=f0_dsmu) More...
 
real(kind=8), private resamp_dvp
 v_para spacing of original v-grid (=f0_dvp) More...
 
real(kind=8), private resamp_mu_max
 v_perp/mu cutoff of v-grid (=f0_mu_max) More...
 
real(kind=8), private resamp_vp_max
 v_para cutoff of v-grid (=f0_vp_max) More...
 
integer, private resamp_musize
 Number of sampling bins in v_perp/mu direction. More...
 
integer, private resamp_vpsize
 Number of sampling bins in v_para direction. More...
 
integer, private resamp_inode1
 Index of the first node of local patch of the configuration space mesh (=f0_inode1) More...
 
integer, private resamp_inode2
 Index of the last node of local patch of the configuration space mesh (=f0_inode2) More...
 
real(kind=8), dimension(:,:),
allocatable, private 
resamp_den
 Reference density per species for normalization. More...
 
real(kind=8), dimension(:,:),
allocatable, private 
resamp_t_ev
 Reference temperature per species for normalization. More...
 
real(kind=8), dimension(:,:),
allocatable, private 
resamp_inv_ph_vol
 Inverse phase-space volume element. More...
 
real(kind=8), dimension(:),
allocatable, private 
resamp_samp_ratio
 Upsampling ratio for restarts with finer grid. More...
 
logical, private resamp_restart_mode =.false.
 
real(kind=8), dimension(:),
allocatable, private 
resamp_phvol_sum
 Sum of phase space volume of all particles on a node. More...
 
real(kind=8), dimension(:),
allocatable, private 
resamp_phvol_added
 Sum of phase space volume of particles added in empty bins. More...
 
real(kind=8), dimension(:,:),
allocatable, private 
p_save
 Holds barycentric coordinates for particles of current resampled species. More...
 
real(kind=8), dimension(:),
allocatable, private 
psi_save
 Caches psi interpolation results for multiple use during resampling. More...
 
integer, parameter, private resamp_hist_size = 10
 Size of variance histogram for resampling statistics, bin width = 1 normalized std deviation. More...
 
integer, dimension(resamp_hist_size),
private 
resamp_up_hist
 Histogram of upsampling results. More...
 
integer, dimension(resamp_hist_size),
private 
resamp_down_hist
 Histogram of downsampling results. More...
 
integer, parameter, private resamp_nongridmom = 8
 Maximum Number of bin moments to be conserved. More...
 
integer, dimension(resamp_nongridmom),
private 
resamp_eq_bin
 which constraints are active as equality constraints More...
 
integer, dimension(resamp_nongridmom),
private 
resamp_ineq_bin
 which constraints are active as inequality constraints More...
 
integer, dimension(:),
allocatable, private 
resamp_off_vgrid
 Counter for number of particles that are not on the v-grid. More...
 
integer, dimension(:),
allocatable, private 
resamp_on_vgrid
 Counter for number of particles that are on the v-grid. More...
 
integer, dimension(:),
allocatable, private 
tr_save
 
integer, private resamp_empty_bins
 Number of empty sampling bins. More...
 
integer, private resamp_resampled_bins
 Number of bins that were picked for re-/up-/down-sampling. More...
 
integer, private resamp_failed_bins
 Number of bins for which re-/up-/down-sampling failed. More...
 
integer, private resamp_var_resample
 Number of variance resampled bins. More...
 
integer, private resamp_resample_failed
 Number of bins for which variance resampling failed. More...
 
integer, private resamp_auto_upsample
 Number of upsampled bins. More...
 
integer, private resamp_upsample_failed
 Number of bins for which upsampling failed. More...
 
integer, private resamp_auto_downsample
 Number of downsampled bins. More...
 
integer, private resamp_downsample_failed
 Number of bins for which downsampling failed. More...
 
integer, private resamp_retried_bins
 Number of bins retried after failure. More...
 
integer, private resamp_retried_failed
 Number of bins failed again after retry. More...
 
integer, private resamp_fullf_failed
 Number of full-f failed bins. More...
 
integer, private resamp_wrong_particles
 Number of particles in wwrong bins. More...
 
integer, private resamp_var_inc_upsamp
 Number of bins that increased the variance tenfold while upsampling. More...
 
integer, private resamp_var_inc_downsamp
 Number of bins that increased the variance tenfold while downsampling. More...
 
integer, private resamp_var_inc
 Number of bins that increased the variance when resampling, RARE, usually result of ill-conditioning of matrix) More...
 
real(kind=8), private resamp_smu_fac
 Factor used in the context of tapering off the marker density at high velocity. More...
 
real(kind=8), private resamp_vp_fac
 Factor used in the context of tapering off the marker density at high velocity. More...
 
integer, private resamp_err_count1
 Counter for w0=0 errors in get_new_fullf_weight. More...
 
integer, private resamp_err_count2
 Counter for w0=0 errors in resample_bin. More...
 

Member Function/Subroutine Documentation

subroutine resamp_module::add_to_bin ( type(resamp_bin_type), intent(inout)  bin,
type(ptl_type), intent(in)  ptli,
integer, intent(in)  ind 
)

Adds the data of one particle to a phase-space bin.

Parameters
[in,out]binPhase-space bin data structure, type(resamp_bin_type)
[in]ptliData of a single particle, type(ptl_type)
[in]indIndex of that particle in the corresponding species data structure, integer

Here is the caller graph for this function:

subroutine resamp_module::build_bins ( type(species_type), intent(inout)  sp,
type(resamp_bin_type), dimension(resamp_inode1:resamp_inode2,resamp_musize+1,0:resamp_vpsize+1), intent(inout)  bins,
type(grid_type), intent(in)  grid,
logical, intent(in)  cce_sync 
)

Loops over particles, puts them in the appropriate bin, computes partial mean This routine sorts particles in the appropriate phase-space bin and computes the total charge in the bin.

Parameters
[in,out]spParticle data structure for one species, type(species_type)
[in,out]binsPhase-space bin data structure, type(resamp_bin_type)
[in]gridXGC grid data structure, type(grid_type)

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::cce_buffer_rcv_updated_bins ( integer, intent(in)  isp)

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::cce_buffer_snd_updated_bins ( integer, intent(in)  isp)

Here is the call graph for this function:

Here is the caller graph for this function:

integer function resamp_module::cce_buffer_sndrcvs_accessor ( integer, intent(in)  idbuf)

Here is the call graph for this function:

integer function resamp_module::cce_do_resampling ( integer, intent(in)  idbuf)

Here is the call graph for this function:

subroutine resamp_module::cce_reset_particle_outside ( type(grid_type), intent(in)  grid,
type(species_type), intent(out)  sp 
)

Here is the call graph for this function:

subroutine resamp_module::check_bin ( type(resamp_bin_type), intent(inout)  bin,
type(species_type), intent(in)  sp,
integer, intent(in)  cce_sync_sendrcv,
integer, intent(inout)  resamp_auto_upsample_loc,
integer, intent(inout)  resamp_auto_downsample_loc,
integer, intent(inout)  resamp_var_resample_loc,
logical, intent(in)  outside_bin 
)

This routine checks whether a bin needs to be resampled and determines the type of resampling (up-/down-/re-sampling). The chosen resampling option is stored in the bin data structure: 0) No resampling needed 1) Resampling due to high weight variance 2) Upsampling due to low particle count 3) Downsampling due to high particle count.

Parameters
[in,out]binPhase-space bin data structure, type(resamp_bin_type)
[in]spParticle data, type(species_type)
[in]cce_sync_sendrcvfor the coupling
[in,out]resamp_auto_upsample_locCounter for upsampled bins
[in,out]resamp_auto_downsample_locCounter for downsampled bins
[in,out]resamp_var_resample_locCounter for variance-resampled bins

We must pass all resamp counters to be updated correctly with OMP.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::destroy_bins ( type(resamp_bin_type), dimension(resamp_inode1:resamp_inode2,1:resamp_musize+1,0:resamp_vpsize+1), intent(inout)  bins)

Cleans up bin memory without deallocating the array of bins itself (can be kept for next species)

Parameters
[in,out]binsBin data structure, type(resamp_bin_type)

Here is the caller graph for this function:

subroutine resamp_module::f0_upsampling_restore_params ( )

restore parameters after f0 upsampling

subroutine resamp_module::f0_upsampling_set_params ( )

set parameters for f0 upsampling

subroutine resamp_module::find_bin ( real (kind=8), intent(in)  smu_n,
real (kind=8), intent(in)  vp_n,
integer, intent(out)  imu,
integer, intent(out)  ivp 
)

This subroutine returns the v-grid bin a particle is in given its normalized coordinates, including high velocity bins.

Parameters
[in]smu_nnormalized square root mu coordinate
[in]vp_nnormalized parallel velocity coordinate
[out]imuinteger bin mu/vperp index
[out]ivpinteger bin parallel velocity index

Here is the caller graph for this function:

integer function resamp_module::get_cce_buffer_nb ( )

Here is the call graph for this function:

subroutine resamp_module::get_marker_velo ( type(grid_type), intent(in)  grid,
type(psn_type), intent(in)  psn,
type(ptl_type), intent(in)  ptli,
integer, intent(in)  isp,
real (kind=8), dimension(4), intent(out)  velo,
real (kind=8), intent(out)  vrad 
)

Evaluates the marker particle equations of motion. The results are the time derivatives of the marker position and parallel velocity (or rho, to be precise), as well as the radial velocity v.grad(psi). The results can be used in the moment preserving QP weight optimization.

Parameters
[in]gridXGC configuration space grid, type(grid_type)
[in]psnE-field/potential data structure, type(psn_type)
[in]ptliParticle data (phase+constants), type(ptl_type)
[in]ispParticle species index, integer
[out]velodX/dt and drho/dt, real(8)
[out]vradRadial particle velocity (dX/dt).grad(psi)

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::get_new_fullf_weight ( type(grid_type), intent(in)  grid,
type(psn_type), intent(in)  psn,
type(ptl_type), intent(inout)  part,
real (8), intent(in)  psi,
real (8), intent(in)  B,
real (8), intent(in)  flow,
real (8), intent(in)  den,
real (8), intent(in)  temp_ev,
integer, intent(in)  spec,
integer, intent(in)  tri,
real (8), dimension(3), intent(in)  bary,
real (8), intent(in)  mark_den,
logical, intent(out)  err 
)

This routine loads new particles into a bin with uniform marker density in configuration space. Particles are drawn from the bin volume. First, a triangle is chosen using importance sampling with the triangle area as criterion. Then a random position in the triangle is drawn. The drawn position is accepted if inside the Voronoi volume of the bin.

Parameters
[in]gridXGC configuration space grid, type(grid_type)
[in,out]new_ptlParticle to store data in
[in]bin_idID of the bin into which particle is loaded
[out]itrTriangle into which the particle was loaded, integer
[out]pBarycentric coordinates of the loaded triangle, real(8)
[out]psiPol. flux at new particle's location, real(8) Compute the new full-f weight of the input particle \(w_0 = f/g\). Note that either \(w_0\) or \(f\) can be chosen freely, while the particle's phasespace volume \(\delta V = 1/g\) is determined by Liousville's theorem of phase space volume conservation. The distribution function \(f\) can in principle be anything here as long as the \(w_2\) weight is set accordingly. The goal is to choose \(w_0\) and \(w_2\) such that the weight evolution equation does not have to be changed. This is from Seung-Hoe Ku's notes: \(f_p = w_1 w_0 g\) \(\frac{\mathrm{D}f_p}{\mathrm{D}t} = w_0 g \frac{\mathrm{d}w_1}{\mathrm{d}t}\) \(=-\frac{\mathrm{D}f_0}{\mathrm{D}t} + S\) \(w_1(t_2)-w_1(t_1) = -\frac{f_0(t_2)-f_0(t_1)}{w_0 g}\) \(w_2(t_2)-w_2(t=0) = -\frac{f_0(t_2)-f_0(t=0)}{w_0 g}\) Easiest choice: \(w_0 g = f_0(t=0),\quad w_2(t=0) = 0\) Then: \(1-w_2 = \frac{f_0(t)}{w_0 g} = \frac{f_0(t)}{f_0(t=0)}\) and \(w_1(t_2)-w_1(t_1) = -\frac{f_0(t_2)}{f_0(t=0)} + (1-w_2(t_1))\)

Over time \(f_0(t) = f_M + f_g(t)\) can become negative, so \(w_0=f_0(t)/g\) with \(w_2(t)=0\) would be negative. But we want positive full-f weights. Therefore, we choose \(w_0=\max(f_0(t_{resample}),\alpha f_M)/g > 0\). This yields \(1-w_2(t) = 1-w_2(t_{resample})-\frac{f_0(t_{resample})}{w_0 g} + \frac{f_0(t)}{w_0 g}\) In order to get \(1-w_2 = \frac{f_0(t)}{w_0 g}\), we need to set \(w_2(t_{resample})\) such that \(1- w_2(t_{resample})-\frac{f_0(t_{resample})}{w_0 g}=0\).

Parameters
[in]gridXGC grid data structure, type(grid_type)
[in]psnField data, type(psn_type)
[in,out]partInput particle data, type(ptl_type)
[in]psiPoloidal flux at particle position, real(8)
[in]BMagnetic field |B_0|, real(8)
[in]flowBackground mean parallel flow, real(8)
[in]denBackground density, real(8)
[in]temp_evBackground temperature
[in]specSpecies type of input particle, integer
[in]triTriangle in which the particle is, integer
[in]baryCorresponding barycentric coordinates, real(8)
[in]mark_denInverse of particle's phase space volume g=1/dV, real(8)
[out]errError flag, logical

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::get_refer_v_n ( real (kind=8), intent(in)  smu_n,
real (kind=8), intent(in)  vp_n,
real (kind=8), intent(out)  smu_ref,
real (kind=8), intent(out)  vp_ref,
integer, dimension(3), intent(in)  bin_id,
logical, intent(out)  err 
)

This subroutine returns reference velocity coordinates in the resampling bin.

Parameters
[in]smu_nnormalized square root mu coordinate
[in]vp_nnormalized parallel velocity coordinate
[out]smu_refreference (bin) square root mu coordinate
[out]vp_refreference (bin) parallel velocity coordinate
[in]bin_idinteger array of 3D bin locators
[out]errlogical, returns .true. if ref. coords. not in [0,1]x[0,1]

Here is the caller graph for this function:

subroutine resamp_module::get_sampling_ratio ( type(grid_type), intent(in)  grid)

This routine upsamples the marker population in spall for a new configuration space grid. The new grid should be denser than the current grid, i.e. require upsampling, not downsampling. This is due to particle data locality. Upsampling to a denser mesh is done on the coarse mesh, while downsampling from a fine mesh is better done with particle data arranged for the coarse mesh. The routine reads in the vertex positions of the new mesh and runs a search for each of them to associate them with the vertices of the current mesh. The ratio of new mesh vertices per current mesh vertex is the upsampling ratio. If the upsampling ratio is smaller than unity, that vertex is skipped.

Parameters
[in]gridXGC configuration space grid, type(grid_type)

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::get_v_n ( real (kind=8), intent(out)  smu_n,
real (kind=8), intent(out)  vp_n,
real (kind=8), intent(in)  B,
real (kind=8), intent(in)  temp_ev,
type (ptl_type), intent(in)  part,
integer, intent(in)  spec 
)

This subroutine returns normalized v-grid coordinates for a particle.

Parameters
[in]Bmagnetic field magnitude
[in]temp_evparticle/reference temperature
[in]parttype ptl_type, current particle
[in]specspecies index, integer
[out]smu_nnormalized square root mu coordinate
[out]vp_nnormalized parallel velocity coordinate
[in]grid_bnodal magnetic field component

Here is the caller graph for this function:

subroutine resamp_module::get_v_part ( real (kind=8), intent(in)  smu_n,
real (kind=8), intent(in)  vp_n,
real (kind=8), intent(out)  mu,
real (kind=8), intent(out)  rho,
real (kind=8), intent(in)  temp,
real (kind=8), intent(in)  B,
integer, intent(in)  spec 
)

This subroutine returns particle velocities given normalized v-grid coordinates.

Parameters
[in]smu_nnormalized square root mu coordinate
[in]vp_nnormalized parallel velocity coordinate
[out]muparticle mu
[out]rhoparticle rho
[in]tempreference temperate
[in]Bmagnetic field magnitude
[in]specspecies index, integer
[in]nod_b4nodal magnetic field component

Here is the caller graph for this function:

logical function resamp_module::in_bin ( real (kind=8), dimension(2), intent(in)  point,
real (kind=8), dimension(2,2), intent(in)  corners 
)

Here is the caller graph for this function:

logical function resamp_module::in_neighborhood ( real (kind=8), dimension(2), intent(in)  point,
integer, dimension(2), intent(in)  indices,
integer, dimension(:,:), intent(in)  grid,
real (kind=8), dimension(:,:), intent(in)  new_set,
real (kind=8), intent(in)  cellsize,
real (kind=8), intent(in)  radius_squared 
)

Here is the caller graph for this function:

logical function resamp_module::is_first_call ( )

Here is the caller graph for this function:

subroutine resamp_module::load_new_ptl ( type(grid_type), intent(in)  grid,
type(ptl_type), intent(inout)  new_ptl,
integer, dimension(3), intent(in)  bin_id,
integer, intent(out)  itr,
real (kind=8), dimension(3), intent(out)  p,
real (kind=8), intent(out)  psi 
)

This routine loads new particles into a bin with uniform marker density in configuration space. Particles are drawn from a rectacngle enclosing the bin volume and are accepted if inside the Voronoi volume of the bin. A more efficient loading can be achieved by pre-selecting the triangle in which to load. This functionality will be provided in a separate function.

Parameters
[in]gridXGC configuration space grid, type(grid_type)
[in,out]new_ptlParticle to store data in
[in]bin_idID of the bin into which particle is loaded
[out]itrTriangle into which the particle was loaded, integer
[out]pBarycentric coordinates of the loaded triangle, real(8)
[out]psiPol. flux at new particle's location, real(8)

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::load_shift_p_ptl ( type(grid_type), intent(in)  grid,
type(ptl_type), intent(inout)  new_ptl,
integer, intent(inout)  itr,
real (kind=8), dimension(3), intent(out)  p,
real (kind=8), intent(out)  psi,
integer, intent(in)  my_node,
real (kind=8), intent(in)  max_shift 
)

Here is the call graph for this function:

Here is the caller graph for this function:

real (kind=8) function, dimension(2,2) resamp_module::local_lin_int ( real (kind=8), intent(in)  smu_ref,
real (kind=8), intent(in)  vp_ref 
)

This function returns the 2x2 local element matrix of bilinear nodal interpolation coefficients corresponding to the particles reference coordinates in the cell.

Parameters
[in]smu_refreal reference coordinate of square-root mu variable
[in]vp_refreal reference coordinate of parallel velocity
Returns
2x2 real matrix of bilinear interpolation coefficients

Here is the caller graph for this function:

subroutine resamp_module::nrm_std_dev ( integer, intent(in)  npart,
real (8), intent(in)  mean,
real (8), dimension(:), intent(in)  weights,
real (8), intent(out)  var 
)

Here is the caller graph for this function:

subroutine resamp_module::output_bin ( integer, intent(in)  npnew,
integer, intent(in)  nconst,
type (species_type), intent(in)  sp,
type (resamp_bin_type), intent(in)  bin,
real (kind=8), dimension(nconst,npnew), intent(in)  Cmat,
real (kind=8), dimension(nconst), intent(in)  constraint,
type (ptl_type), dimension(npnew), intent(in)  bin_new_ptl,
integer, dimension(:), intent(in)  new_tri,
real (kind=8), dimension(:), intent(in)  new_psi,
integer, intent(in)  ierr,
logical, intent(inout)  dump_problem_bins,
real (kind=8), dimension(:), intent(in), optional  weights 
)

Routine for outputting a flagged resampling bin. This is typically due to either the failure of the quadratic program OR a high variance result, and is controlled by the input flag resamp_output_problem_bins.

Parameters
[in]npnewinteger, number of target particles for resampling
[in]nconstinteger, number of total constraints for resampling, for outputing Cmat
[in]spspecies_type, current species being resampled
[in]binresamp_bin_type, current bin being resampled and output
[in]bin_new_ptlptl_type, current set of candidate particle locations after resampling
[in]Cmatreal array, constraint matrix (including inequalities) for quadratic program
[in]constraintconstraint vector for QP
[in]ierrinteger, error flag
[in]new_triinteger vector of triangles for candidate particles in bin
[in]new_psireal 8 vector of canditate particles psi values
[in,out]dump_problem_binsthread-local value to prevent massive IO from occuring
in,optional]weights if QP produced solution with unaccetpable variance, new weights

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::particle_not_in_vbin ( real (kind=8), intent(in)  smu_ref,
real (kind=8), intent(in)  vp_ref,
real (kind=8), intent(in)  smu_n,
real (kind=8), intent(in)  vp_n,
type (resamp_bin_type), intent(in)  bin,
type (ptl_type), intent(in)  part,
integer, intent(in)  num_part,
integer, intent(in)  index,
real (kind=8), intent(in)  rtemp,
real (kind=8), intent(in)  B,
real (kind=8), intent(in)  b_grid 
)

This subroutine is error handling for when a particle(usually generated) does not like in the correct velocity space bin.

Parameters
[in]smu_refcomputed reference smu coordinate
[in]vp_refcomputed refernce para velocity coordinate
[in]smu_nnormalized mu velocity coordinate
[in]vp_nnormalized parallel velocity coordinate
[in]binresamp_bin_type, current resampling bin
[in]partptl_type, current particle
[in]num_partinteger, target number of particles
[in]indexinteger, which candidate particle in not_in_bin
[in]rtempparticles reference temperate
[in]Bmagnetic field magnitude at particle location
[in]b_gridreal, needed component of grid magnetic field for normalization

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::poisson_disc ( real (kind=8), dimension(:,:), intent(in)  initial,
real (kind=8), dimension(:,:), intent(in)  corners,
integer, intent(in)  bin_part,
integer, intent(in)  bin_target,
real (kind=8), dimension(:,:), intent(inout)  new_set,
integer, intent(in)  k 
)

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::refer_to_v_n ( real (kind=8), intent(in)  smu_ref,
real (kind=8), intent(in)  vp_ref,
real (kind=8), intent(out)  smu_n,
real (kind=8), intent(out)  vp_n,
integer, dimension(3), intent(in)  bin_id 
)

This subroutine maps reference coordinates to normalized coordinates.

Parameters
[out]smu_nnormalized square root mu coordinate
[out]vp_nnormalized parallel velocity coordinate
[in]smu_refreference (bin) square root mu coordinate
[in]vp_refreference (bin) parallel velocity coordinate
[in]bin_idinteger array of 3D bin locators

Here is the caller graph for this function:

subroutine resamp_module::resamp_scale_phvol ( type(grid_type), intent(in)  grid,
type(species_type), intent(inout)  sp 
)

Loops over particles and scales their phase space volume to account for particles added to empty bins.

Parameters
[in]gridXGC grid data structure, type(grid_type)
[in,out]spParticle data structure for one species, type(species_type)

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::resample_bin ( type (resamp_bin_type), intent(inout)  bin,
type (grid_type), intent(in)  grid,
type (species_type), intent(inout)  sp,
type (psn_type), intent(in)  psn,
integer, intent(in)  cce_sync_sendrcv,
integer, intent(in)  start_wr_pos,
integer, intent(inout)  resamp_failed_bins_loc,
integer, intent(inout)  resamp_upsample_failed_loc,
integer, intent(inout)  resamp_downsample_failed_loc,
integer, intent(inout)  resamp_resample_failed_loc,
integer, intent(inout)  resamp_retried_bins_loc,
integer, intent(inout)  resamp_retried_failed_loc,
integer, intent(inout)  resamp_fullf_failed_loc,
real (8), intent(inout)  resamp_phvol_added_loc,
integer, intent(inout)  resamp_var_inc_upsamp_loc,
integer, intent(inout)  resamp_var_inc_downsamp_loc,
logical, intent(inout)  dump_problem_bins,
integer, intent(inout)  resamp_var_inc_loc,
integer, dimension(resamp_hist_size), intent(inout)  resamp_up_hist_loc,
integer, dimension(resamp_hist_size), intent(inout)  resamp_down_hist_loc 
)

The actual process of resampling the particle set in a bin happens in this routine. A bin is passed as input, the pre-determined type of resampling is executed and the weights of the new particle set are computed with a QP optimization. If the optimization is successful, the old particle set in the input variable "sp" is replaced with the new particle set.

Parameters
[in,out]binPhase-space bin data structure, type(resamp_bin_type)
[in]gridXGC grid data structure, type(grid_type)
[in,out]spParticle data structure, type(species_type)
[in]psnField data, type(psn_type)
[in]cce_sync_sendrcv0:no f-coupling, 1 sender, 2 receiver
[in]start_wr_posWrite position in sp, integer
[in,out]resamp_failed_bins_locCounter for failed bins
[in,out]resamp_upsample_failed_locCounter for failed upsampled bins
[in,out]resamp_downsample_failed_locCounter for failed downsampled bins
[in,out]resamp_resample_failed_locCounter for failed var-resampled bins
[in,out]resamp_retried_bins_locCounter for retried bins
[in,out]resamp_retried_failed_locCounter for bins that failed on retry
[in,out]resamp_fullf_failed_locCounter for bins with failed full-f resampling
[in,out]resamp_phvol_added_locPhase space volume of particles added to empty bins
[in,out]resamp_var_inc_upsamp_locCounter for bins with large relative variance after upsampling
[in,out]resamp_var_inc_downsamp_locCounter for bins with large relative variance after downsampling

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::resample_finalize ( type(resamp_bin_type), dimension(:,:,:), allocatable  bins)

This routine cleans up the resampling module.

Parameters
[in,out]binsResampling bin data structure, type(resamp_bin_type)

Here is the caller graph for this function:

subroutine resamp_module::resample_init ( type(grid_type), intent(in)  grid,
integer, intent(in)  inode1,
integer, intent(in)  inode2,
real (kind=8), intent(in)  dsmu,
real (kind=8), intent(in)  dvp,
integer, intent(in)  nmu,
integer, intent(in)  nvp,
real (kind=8), intent(in)  vp_max,
real (kind=8), intent(in)  mu_max,
integer, intent(in)  tile_size,
type(resamp_bin_type), dimension(:,:,:), allocatable  bins,
integer, intent(in)  cce_sync_sendrcv 
)

This routine initializes the resampling module and sets some global parameters such as v-grid size, etc.

Parameters
[in]gridXGC mesh data structure, type(grid_type)
[in]inode1Index of first vertex in the mesh domain, integer
[in]inode2Index of last vertex in the mesh domain, integer
[in]dsmuv_perp/mu resolution of XGC's total-f velocity grid, integer
[in]dvpv_para resolution of XGC's total-f v-grid, integer
[in]nmuNumber of v_perp/mu bins in total-f v-grid, integer
[in]nvpHalf the number of v_para bins in total-f v-grid, integer
[in]vp_maxv_para cutoff of total-f v-grid, real(8)
[in]mu_maxv_perp/mu cutoff of total-f v-grid, real(8)
[in]tile_sizeResampling combines tile_size x tile_size bins of the total-f v-grid to one macro bin, integer
[in,out]binsResampling phase space bins, type(resamp_bin_type)

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::resample_one_sp ( integer  isp,
integer  cce_sync_sendrcv 
)

Resample the marker particles of one species in XGC to improve phase-space coverage and reduce marker noise.

Parameters
[in]ispThe species to resample
[in]cce_sendrcvTakes values 0(nothing), 1(sender) , 2(receiver)

Here is the call graph for this function:

subroutine resamp_module::resample_spall_finish ( )

Here is the call graph for this function:

subroutine resamp_module::resample_spall_setup ( integer  inode1,
integer  inode2,
real (kind=8)  dsmu,
real (kind=8)  dvp,
integer  nmu,
integer  nvp,
real (kind=8)  vp_max,
real (kind=8)  mu_max,
integer  cce_sync_sendrcv,
integer  tile_size 
)

Resample the marker particles in XGC to improve phase-space coverage and reduce marker noise.

Parameters
[in]inode1Index of first mesh vertex in domain, integer
[in]inode2Index of last mesh vertex in domain, integer
[in]dsmuv_perp/mu resolution of XGC's total-f velocity grid, integer
[in]dvpv_para resolution of XGC's total-f v-grid, integer
[in]nmuNumber of v_perp/mu bins in total-f v-grid, integer
[in]nvpHalf the number of v_para bins in total-f v-grid, integer
[in]vp_maxv_para cutoff of total-f v-grid, real(8)
[in]mu_maxv_perp/mu cutoff of total-f v-grid, real(8)
[in]tile_sizeResampling combines tile_size x tile_size bins of the total-f v-grid to one macro bin, integer, optional
[in]cce_sendrcvTakes values 0(nothing), 1(sender) , 2(receiver)

Here is the call graph for this function:

subroutine resamp_module::restart_resample_restore_params ( )

Move phase space density from the 5D grid over to the particles for restarting simulatin with a different grid.

Here is the call graph for this function:

subroutine resamp_module::restart_resample_set_params ( )

Move phase space density from the 5D grid over to the particles for restarting simulatin with a different grid.

Here is the call graph for this function:

subroutine resamp_module::set_cce_buffer_and_overlap_id ( integer, intent(in)  id1,
integer, intent(in)  id2,
integer, intent(in)  inode1,
integer, intent(in)  inode2 
)

Here is the caller graph for this function:

subroutine resamp_module::set_cce_buffer_id ( integer, intent(in)  id,
integer, intent(in)  inode1,
integer, intent(in)  inode2 
)

Here is the caller graph for this function:

subroutine resamp_module::set_cce_buffers ( integer, intent(in)  istep,
integer, intent(in)  idbuf 
)

Here is the call graph for this function:

subroutine resamp_module::set_eq_bins ( integer, dimension(resamp_nongridmom), intent(in)  eq_bin,
integer, dimension(resamp_nongridmom), intent(in)  ineq_bin 
)
subroutine resamp_module::setup_fullf ( type(ptl_type), intent(in)  ptli,
integer, intent(in)  spec_type,
real (8), intent(out)  den,
real (8), intent(out)  flow,
real (8), intent(out)  temp_ev,
real (8), dimension(3), intent(out)  bvec,
real (8), intent(out)  B,
real (8), intent(inout)  psi 
)

Placeholder routine for velocity space shift, may not be implemented.

Evaluate the background density, temperature, flow, magnetic field and psi at the input particle's position

Parameters
[in]ptliInput particle data, type(ptl_type)
in[spec_type Species type of input particle, integer
[out]denBackground density, real(8)
[out]flowBackground toroidal flow velocity, real(8)
[out]temp_evBackground temperature, real(8)
[out]bvecMagnetic field vector B, real(8)
[out]BMagnetic field |B_0|, real(8)
[out]psiPoloidal magnetic flux, real(8)

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::setup_opt ( integer, intent(in)  nconstraint,
integer, intent(in)  part_num,
real (8), dimension(nconstraint,part_num), intent(in)  Cmat,
real (8), dimension(nconstraint), intent(inout)  constraint,
real (8), dimension(part_num), intent(inout)  weights,
integer, intent(in)  n_eq_bin,
integer, intent(in)  n_ineq_bin,
integer, dimension(resamp_nongridmom), intent(in)  eq_bin,
integer, dimension(resamp_nongridmom), intent(in)  ineq_bin,
logical, intent(in)  grid_ineq_on,
real (8), intent(in)  ineq_tol,
logical, intent(in)  positivity,
integer, intent(out)  ierr 
)

This routine sets up the input for the QP optimization that computes the delta-f weights of the new particles. There are two types of constraints, bin and grid constraints. Bin constraints correspond to moments of the distribution function evaluated with nearest neighbor interpolation on the configuration space grid. Grid constraints correspond to moments evaluated with linear (barycentric) interpolation on the conf. space grid. Bin constraints can be enforced as equality and inequality constraints: use idx_constraint and idx_constraint2 to choose which constraint is an equality and which is an inequality constraint. Grid constraints are enforced as inequality constraints. Since grid constraints make the optimization problem much harder due to their large number, using them is optional (grid_ineq_on) A positivity constraint for the weights can be activated with the variable "positivity". This is used for full-f optimization.

Parameters
[in]nconstraintNumber of constraints, integer
[in]part_numNumber of particles, integer
[in]CmatConstraint matrix, N_constraint x N_ptl, real(8)
[in]constraintValues of the constraints, real(8)
[in,out]weightsDelta-f weights w1, N_ptl, real(8)
[in]grid_ineq_onWhether to conserve the grid charge or not, logical
[in]ineq_tolError tolerance for the inequality constraints, real(8)
[in]positivityWhether to require weight>0, logical
[in,out]ierrError flag, integer

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::transpose_from_aos_wrapper ( integer  isp)

Here is the call graph for this function:

subroutine resamp_module::update_cmat ( type(grid_type), intent(in)  grid,
type(psn_type), intent(in)  psn,
integer, intent(in)  nconstraint,
integer, intent(in)  nptl,
integer, intent(in)  vert,
integer, dimension(1:vert), intent(in)  patch,
real (8), dimension(3), intent(in)  bary,
integer, intent(in)  tri,
real (8), intent(in)  psi,
real (8), intent(in)  B,
real (8), dimension(3), intent(in)  bvec,
integer, intent(in)  spec,
integer, intent(in)  pindex,
type(ptl_type), intent(in)  part,
real (8), dimension(nconstraint,nptl), intent(out)  Cmat,
integer, intent(in)  op_mode 
)

This subroutine sets up the matrix C (constraint matrix) with the coefficients needed to compute the conserved quantities charge, parallel momentum, magnetic moment, parallel and perp. kinetic energy and the grid charge on the vertices connected to the bin. Those quantities are then obtained by multiplying the matrix C with the delta-f (–> w1) weight vector from the right. This matrix forms the basis for the QP optimization program that finds the delta-f weights for the resampled particle set.

Parameters
[in]gridXGC grid data structure, type(grid_type)
[in]psnXGC E-field/potential data, type(psn_type)
[in]nconstraintNumber of equality+inequality constraints, integer
[in]nptlNumber of particles in bin, integer
[in]vertNumber of vertices connected to this bin (patch size), integer
[in]patchIndices of the vertices connected to this bin, integer
[in]baryBarycentric coordinates of the particle, real(8)
[in]triTriangle in which the particle is, integer
[in]psiPol. flux at particle position, real(8)
[in]BLocal magnetic field |B|, real(8)
[in]bvecMagnetic field vector B, real(8)
[in]specSpecies index, integer
[in]pindexPosition of the particle in the particle set, integer
[in]partData of one particle, type(ptl_type)
[in,out]CmatThe matrix C from the (see documentation), real(8)
[in]op_modeSwitch for optimizing full-f weights w0 (0)or delta-f weights (1), integer

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine resamp_module::use_default_eq_bins ( )

Member Data Documentation

integer resamp_module::cce_buffer_first_node
integer resamp_module::cce_buffer_id

Index of currently resampled buffer.

integer resamp_module::cce_buffer_last_node

node interval of current buffer

integer resamp_module::cce_grid_nnode

Number of node on the grid.

integer resamp_module::cce_inode1
integer resamp_module::cce_inode2
integer, parameter resamp_module::cce_nbconstraint =5
logical resamp_module::cce_skip_nodes
real (kind=8), dimension(:,:,:,:,:,:), allocatable resamp_module::fbins
type(ptl_type), dimension(:), allocatable, target resamp_module::local_particles
real (kind=8), dimension(:,:), allocatable, private resamp_module::p_save
private

Holds barycentric coordinates for particles of current resampled species.

real (kind=8), dimension(:), allocatable, private resamp_module::psi_save
private

Caches psi interpolation results for multiple use during resampling.

integer, private resamp_module::resamp_auto_downsample
private

Number of downsampled bins.

integer, private resamp_module::resamp_auto_upsample
private

Number of upsampled bins.

real (kind=8), private resamp_module::resamp_bin_max_fac
private

threshold for auto downsample

type (resamp_bin_type), dimension(:,:,:), allocatable resamp_module::resamp_bins
real (kind=8), dimension(:,:), allocatable, private resamp_module::resamp_den
private

Reference density per species for normalization.

logical resamp_module::resamp_discard_var_bins = .false.

Discard resampled bins that increase the variance by factor of resamp_var_limit.

logical resamp_module::resamp_distribute_evenly_subbins =.false.

Whether to fill/remove evenly in 1x1 velocity cells in the bin when resamp_tile_size > 1 and upsampling/downsampling.

character(16) resamp_module::resamp_down_choice ='weight'

option arg for downsampled new particle selection: 'random','weight','weight+replace','volume' weight: keep particles with largest w0*w1 absolute weight, deterministic weight+replace: keep particles with largest w0*w1 absolute weight, allow multiple copies of same particle if split weight is still larger than next unsplit particle volume: keep particles with largest phase space volume, deterministic

integer, dimension(resamp_hist_size), private resamp_module::resamp_down_hist
private

Histogram of downsampling results.

integer, private resamp_module::resamp_downsample_failed
private

Number of bins for which downsampling failed.

real (kind=8), private resamp_module::resamp_dsmu
private

v_perp/mu spacing of original v-grid (=f0_dsmu)

real (kind=8), private resamp_module::resamp_dvp
private

v_para spacing of original v-grid (=f0_dvp)

integer, private resamp_module::resamp_empty_bins
private

Number of empty sampling bins.

integer, dimension(resamp_nongridmom), private resamp_module::resamp_eq_bin
private

which constraints are active as equality constraints

integer, private resamp_module::resamp_err_count1
private

Counter for w0=0 errors in get_new_fullf_weight.

integer, private resamp_module::resamp_err_count2
private

Counter for w0=0 errors in resample_bin.

integer, private resamp_module::resamp_failed_bins
private

Number of bins for which re-/up-/down-sampling failed.

logical resamp_module::resamp_fill_empty =.false.

Whether to fill empty bins.

logical resamp_module::resamp_fill_empty_subbins =.false.

Whether to fill all empty 1x1 velocity cells in the bin and there are already particles in the bin.

integer resamp_module::resamp_fill_empty_subbins_corner_cell_target =1

If resamp_fill_empty_subbins=.true., minimum target of corner cells.

logical resamp_module::resamp_fill_empty_subbins_skip_full_bins

If resamp_fill_empty_subbins=.true., skip a bin if it is already filled enough to do the pseudo-inverse interpolation.

integer resamp_module::resamp_fill_empty_subbins_target =1

If resamp_fill_empty_subbins=.true., minimum target of sub bins.

integer, private resamp_module::resamp_fullf_failed
private

Number of full-f failed bins.

logical resamp_module::resamp_fullf_on =.false.

Whether to resample the full-f weights in addition to delta-f weights.

logical resamp_module::resamp_grid_ineq_on =.false.

Switch for using inequality constraints for the grid charge for resampling.

real (8) resamp_module::resamp_highv_max = 10D0

energy cutoff of the high velocity bins v_para>f0_vp_max and v_perp>f0_smu_max

real (8) resamp_module::resamp_highv_max_ratio = 4D0

Downsampling threshold for high-velocity bins.

integer, parameter, private resamp_module::resamp_hist_size = 10
private

Size of variance histogram for resampling statistics, bin width = 1 normalized std deviation.

integer, dimension(resamp_nongridmom), private resamp_module::resamp_ineq_bin
private

which constraints are active as inequality constraints

real (8) resamp_module::resamp_ineq_tol = 1D-4

Threshold for relative error in the inequality constraints in the QP optimization.

real (8) resamp_module::resamp_ineq_tol_max = 1D-3

Maximal threshold for relative error in inequality constraints for retried bins.

integer, private resamp_module::resamp_inode1
private

Index of the first node of local patch of the configuration space mesh (=f0_inode1)

integer, private resamp_module::resamp_inode2
private

Index of the last node of local patch of the configuration space mesh (=f0_inode2)

real (kind=8), private resamp_module::resamp_inv_bin_num
private

Inverse of the number of macro bins in v-space.

real (kind=8), dimension(:,:), allocatable, private resamp_module::resamp_inv_ph_vol
private

Inverse phase-space volume element.

logical resamp_module::resamp_keep_downsamples = .false.

Retain downsampling results with high variance, mainly for preventing buildup. Only relevant if resamp_discard_var_bins is .true.

logical resamp_module::resamp_keep_upsamples = .false.

Retain upsampling results with high variance, for filling for pseudoinverse. Only relevant if resamp_discard_var_bins is .true.

real (8) resamp_module::resamp_max_ratio = 1.5D0

max ratio of (# of ptl)/(target # of ptl) in bin for auto-downsample

real (kind=8) resamp_module::resamp_max_shift = 1D-1

maximum shift in local coordinates for 'copy', 'weight+replace'

integer resamp_module::resamp_max_target = 4

Overrides the number of constraints in determining the target # of ptl of a bin.

real (8) resamp_module::resamp_min_ratio = 0.5D0

min ratio of (# of ptl)/(target # of ptl) in bin for auto-upsample

real (kind=8), private resamp_module::resamp_mu_max
private

v_perp/mu cutoff of v-grid (=f0_mu_max)

integer, private resamp_module::resamp_musize
private

Number of sampling bins in v_perp/mu direction.

integer, private resamp_module::resamp_nmu_in
private

Number of cells on original vperp/mu grid (=f0_nmu)

character (len=200) resamp_module::resamp_node_file = 'dum.node'

File containing the vertex positions of the mesh for which to resample.

integer, parameter, private resamp_module::resamp_nongridmom = 8
private

Maximum Number of bin moments to be conserved.

integer resamp_module::resamp_nphi_new =1

Number of poloidal planes in simulation with new mesh.

integer, private resamp_module::resamp_nvp_in
private

Number of cells on original v_para grid (=f0_nvp)

integer, dimension(:), allocatable, private resamp_module::resamp_off_vgrid
private

Counter for number of particles that are not on the v-grid.

integer, dimension(:), allocatable, private resamp_module::resamp_on_vgrid
private

Counter for number of particles that are on the v-grid.

logical resamp_module::resamp_output_problem_bins =.false.

Switch to output failed or high-variance bins as to .bp files.

real (kind=8), dimension(:,:), allocatable resamp_module::resamp_patch_rzdims

R-Z boundaries of the Voronoi-triangle patch.

integer, dimension(:), allocatable resamp_module::resamp_patch_size

total number of patch vertices in Voronoi cell

integer, dimension(:,:), allocatable resamp_module::resamp_patches

!< node numbers of vertices contained in triangle patch of voronoi cell

real (kind=8), dimension(:), allocatable, private resamp_module::resamp_phvol_added
private

Sum of phase space volume of particles added in empty bins.

real (kind=8), dimension(:), allocatable, private resamp_module::resamp_phvol_sum
private

Sum of phase space volume of all particles on a node.

integer resamp_module::resamp_rate = 2

timesteps between subsequent resamples, placedholder, in practice ~ sml_f_source_period

integer, private resamp_module::resamp_resample_failed
private

Number of bins for which variance resampling failed.

integer, private resamp_module::resamp_resampled_bins
private

Number of bins that were picked for re-/up-/down-sampling.

logical resamp_module::resamp_restart = .false.

Perform resampling before dumping the final restart file.

logical, private resamp_module::resamp_restart_mode =.false.
private
logical resamp_module::resamp_restart_read =.false.

Whether to read a restart file written from a simulation with different grid.

integer, private resamp_module::resamp_retried_bins
private

Number of bins retried after failure.

integer, private resamp_module::resamp_retried_failed
private

Number of bins failed again after retry.

logical resamp_module::resamp_retry = .false.

Retry QP optimization for failed bins with relaxed inequality constraints.

real (kind=8), dimension(:), allocatable, private resamp_module::resamp_samp_ratio
private

Upsampling ratio for restarts with finer grid.

real (kind=8), private resamp_module::resamp_smu_fac
private

Factor used in the context of tapering off the marker density at high velocity.

real (kind=8), dimension(:,:), allocatable, private resamp_module::resamp_t_ev
private

Reference temperature per species for normalization.

integer resamp_module::resamp_tile_size = 2

Bin size on the velocity space grid in cells (not vertices) (input parameter)

integer resamp_module::resamp_tile_size_now = 2

Used to override resamp_tile_size.

character(16) resamp_module::resamp_up_choice ='random'

option arg for upsampled new particle selection: 'random','copy','poisson' currently added random: random velocity coordinates for new particles in bin copy: add new particles as copies of old particles with largest absolute w0*w1 weight poision: add new particles as poisson disc samples generated from the old particle set.

integer, dimension(resamp_hist_size), private resamp_module::resamp_up_hist
private

Histogram of upsampling results.

integer, private resamp_module::resamp_upsample_failed
private

Number of bins for which upsampling failed.

real (8) resamp_module::resamp_var = 1D4

threshold for relative standard deviation in bin for auto-resample

integer, private resamp_module::resamp_var_inc
private

Number of bins that increased the variance when resampling, RARE, usually result of ill-conditioning of matrix)

integer, private resamp_module::resamp_var_inc_downsamp
private

Number of bins that increased the variance tenfold while downsampling.

integer, private resamp_module::resamp_var_inc_upsamp
private

Number of bins that increased the variance tenfold while upsampling.

real (8) resamp_module::resamp_var_limit = 3D0

Increase in relative bin variance for flagging for possible rejection.

integer, private resamp_module::resamp_var_resample
private

Number of variance resampled bins.

real (kind=8), private resamp_module::resamp_vp_fac
private

Factor used in the context of tapering off the marker density at high velocity.

real (kind=8), private resamp_module::resamp_vp_max
private

v_para cutoff of v-grid (=f0_vp_max)

integer, private resamp_module::resamp_vpsize
private

Number of sampling bins in v_para direction.

integer, private resamp_module::resamp_wrong_particles
private

Number of particles in wwrong bins.

character (len=16) resamp_module::tmp_down_choice
logical resamp_module::tmp_resamp_distribute_evenly_subbins
logical resamp_module::tmp_resamp_fill_empty
logical resamp_module::tmp_resamp_fill_empty_subbins
integer resamp_module::tmp_resamp_fill_empty_subbins_corner_cell_target
logical resamp_module::tmp_resamp_fill_empty_subbins_skip_full_bins
integer resamp_module::tmp_resamp_fill_empty_subbins_target
logical resamp_module::tmp_resamp_fullf_on
logical resamp_module::tmp_resamp_grid_ineq_on
real (8) resamp_module::tmp_resamp_highv_max
real (8) resamp_module::tmp_resamp_highv_max_ratio
real (8) resamp_module::tmp_resamp_ineq_tol
real (8) resamp_module::tmp_resamp_ineq_tol_max
real (8) resamp_module::tmp_resamp_max_ratio
integer resamp_module::tmp_resamp_max_target
real (8) resamp_module::tmp_resamp_min_ratio
character (len=200) resamp_module::tmp_resamp_node_file
integer resamp_module::tmp_resamp_nphi_new
logical resamp_module::tmp_resamp_retry
integer resamp_module::tmp_resamp_tile_size
real (8) resamp_module::tmp_resamp_var
character (len=16) resamp_module::tmp_up_choice
integer, dimension(:), allocatable, private resamp_module::tr_save
private

The documentation for this module was generated from the following file: