XGC1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
globals.hpp
Go to the documentation of this file.
1 #ifndef GLOBALS_HPP
2 #define GLOBALS_HPP
3 #include <limits.h>
4 #include <string>
5 #include <cassert>
6 #include "space_settings.hpp"
7 #include "array_deep_copy.hpp"
8 #include "access_add.hpp"
9 #include "simd.hpp"
10 #ifdef USE_MPI
11 #include "my_mpi.hpp"
12 #endif
13 #include "constants.hpp"
14 
15 /* Returns max number of omp threads, or 1 if no omp
16  */
17 inline int get_num_cpu_threads(){
18 #ifdef USE_OMP
19  return omp_get_max_threads();
20 #else
21  return 1;
22 #endif
23 }
24 
25 /* Return true if MPI rank is zero
26  * */
27 inline bool is_rank_zero(){
28 #ifdef USE_MPI
29  return SML_COMM_RANK==0;
30 #else
31  return true;
32 #endif
33 }
34 
35 /* Safely abort and exit the code
36  * */
37 inline void exit_XGC(std::string msg){
38  printf("%s",msg.c_str());
39  fflush(stdout);
40 #ifdef USE_MPI
41  MPI_Abort(SML_COMM_WORLD, 1);
42 #else
43  exit(1);
44 #endif
45 }
46 
47 /* Asserts condition
48  * (Callable from Device)
49  * (C++ has no standardized assert with a message)
50  * */
51 KOKKOS_INLINE_FUNCTION void assert_XGC(bool cond, const char* msg){
52  if(!cond){
53  DEVICE_PRINTF("%s",msg);
54  assert(false);
55  }
56 }
57 
58 /* Check that two integers multiplied together doesn't cause an overflow
59  * */
60 inline bool causes_multiplication_overflow(int a,int b){
61  int c = a*b;
62  if(b==0) return false; // No overflow
63  return !(c/b == a);
64 }
65 
66 /* Check that two integers added together doesn't cause an overflow
67  * */
68 inline bool causes_addition_overflow(int a,int b){
69  if ( ((b > 0) && (a > INT_MAX - b)) // a + b would overflow
70  ||((b < 0) && (a < INT_MIN - b)) ){ // a + b would underflow
71  return true;
72  } else {
73  return false;
74  }
75 }
76 
77 enum class Order{
78  Zero,
79  One,
80  Two
81 };
82 
84  ELECTRON = 0,
86 };
87 
88 enum KinType{
91 };
92 
93 /* PhiInterpType specifies whether the field uses two values in order to interpolate in the phi direction
94  * */
95 enum class PhiInterpType{
96  Planes,
97  None
98 };
99 
100 // Eventually, nearly the entire code will be templated on PhiInterpType, which is XGC1 vs XGCa
101 // As an intermediate step, it is convenient to specify the template in one global location
102 #ifdef XGC1
104 #else
106 #endif
107 
108 /* What type of marker weight algorithm to use, reduced delta-f or total-f
109  */
110 enum class MarkerType{
112  FullF,
113  TotalF,
114  None
115 };
116 enum class FAnalyticShape{
117  Maxwellian,
118  SlowingDown,
119  None
120 };
121 enum class WeightEvoEq{
122  Direct,
123  PDE,
124  None
125 };
126 
127 enum class MagneticFieldMode{
130 };
131 #ifdef EXPLICIT_EM
133 #else
135 #endif
136 
137 enum class BFieldSymmetry{
138  Tokamak,
140 };
141 #ifdef STELLARATOR
143 #else
145 #endif
146 
147 /* Whether to use cylindrical limit geometry with periodic boundary function
148  */
149 enum class GeometryType{
150  Toroidal,
152 };
153 #ifdef CYLINDRICAL
155 #else
157 #endif
158 
168 template<GeometryType GT>
169 KOKKOS_INLINE_FUNCTION double geometry_switch(double a, double b);
170 
171 template<>
172 KOKKOS_INLINE_FUNCTION double geometry_switch<GeometryType::Toroidal>(double a, double b){
173  return a;
174 }
175 
176 template<>
177 KOKKOS_INLINE_FUNCTION double geometry_switch<GeometryType::CylindricalLimit>(double a, double b){
178  return b;
179 }
180 
181 
185 template<GeometryType GT>
186 KOKKOS_INLINE_FUNCTION constexpr bool use_toroidal_terms();
187 
188 template<>
189 KOKKOS_INLINE_FUNCTION constexpr bool use_toroidal_terms<GeometryType::CylindricalLimit>(){
190  return 0;
191 }
192 
193 template<>
194 KOKKOS_INLINE_FUNCTION constexpr bool use_toroidal_terms<GeometryType::Toroidal>(){
195  return 1;
196 }
197 
198 /***/
199 
201  PIR = 0,
202  PIZ,
203  PIP,
208 };
209 
211  PIM = 0,
214 #ifdef PTL_G2
215  PIG2,
216 #endif
218 };
219 
220 // Divide two integers, then round up
221 KOKKOS_INLINE_FUNCTION int divide_and_round_up(int a, int b){
222  return (a+b-1)/b;
223 }
224 
225 // Positive modulo. i.e. positive_modulo(-1,3) will return 2, whereas (-1)%3 returns -1.
226 KOKKOS_INLINE_FUNCTION unsigned positive_modulo( int value, unsigned m) {
227  int mod = value % (int)m;
228  if (mod < 0) {
229  mod += m;
230  }
231  return mod;
232 }
233 
234 /* Returns the offset of an evenly distributed set of objects into even subsets. If the set can be distributed evenly,
235  * then this operation is simply the local subset times the result of the division. If not, then the first k
236  * subsets will have one extra object, where k is the remainder.
237  *
238  * n_obj is the number of objects that need to be divided
239  * n_subsets is the number of ranks the objects are being divided into
240  * i_subset is the index of this particular subset
241  *
242  */
243 inline long long int offsets_of_even_distribution(long long int n_obj, long long int n_subsets, long long int i_subset){
244  long long int obj_per_subset = n_obj/n_subsets;
245  long long int remainder = n_obj%n_subsets;
246  if (i_subset<remainder){
247  obj_per_subset += 1;
248  return i_subset*obj_per_subset;
249  }else{
250  return i_subset*obj_per_subset + remainder;
251  }
252 }
253 
254 /* Returns the count of an evenly distributed set of objects into even subsets. If the set can be distributed evenly,
255  * then this operation is simply the result of the division. If not, then the first k
256  * subsets will have one extra object, where k is the remainder.
257  *
258  * n_obj is the number of objects that need to be divided
259  * n_subsets is the number of ranks the objects are being divided into
260  * i_subset is the index of this particular subset
261  *
262  */
263 inline long long int counts_of_even_distribution(long long int n_obj, long long int n_subsets, long long int i_subset){
264  long long int obj_per_subset = n_obj/n_subsets;
265  long long int remainder = n_obj%n_subsets;
266  if (i_subset<remainder){
267  obj_per_subset += 1;
268  }
269  return obj_per_subset;
270 }
271 
272 // Converts integer to string and adds leading zeros
273 inline std::string formatted_int2str(int input, int n_digits){
274  std::string string_no_leading = std::to_string(input); // no leading zeros
275 
276  int initial_length = string_no_leading.length();
277  int zeros_to_add = n_digits - std::min(n_digits, initial_length);
278 
279  // Add leading zeros
280  return std::string(zeros_to_add, '0') + string_no_leading;
281 }
282 
283 // is_same_type is equivalent to std::is_same, but can be used in cuda kernels
284 template<class T, class U> struct is_same_type{static constexpr bool val=false;};
285 template<class T > struct is_same_type<T, T>{static constexpr bool val=true;};
286 
287 // Defined and initialized in my_mpi.cpp, reset in sml.tpp
288 extern bool global_debug_flag;
289 extern bool global_perf_barriers_flag;
290 
291 #endif
Definition: globals.hpp:84
Magnetic moment mu.
Definition: globals.hpp:211
KOKKOS_INLINE_FUNCTION int divide_and_round_up(int a, int b)
Definition: globals.hpp:221
constexpr GeometryType GEOMETRY
Definition: globals.hpp:156
bool is_rank_zero()
Definition: globals.hpp:27
MarkerType
Definition: globals.hpp:110
gyroradius
Definition: globals.hpp:204
MPI_Comm SML_COMM_WORLD
Definition: my_mpi.cpp:4
long long int counts_of_even_distribution(long long int n_obj, long long int n_subsets, long long int i_subset)
Definition: globals.hpp:263
#define DEVICE_PRINTF(...)
Definition: space_settings.hpp:86
constexpr BFieldSymmetry BFS_GLOBAL
Definition: globals.hpp:144
Definition: globals.hpp:89
W0.
Definition: globals.hpp:212
bool causes_multiplication_overflow(int a, int b)
Definition: globals.hpp:60
Definition: globals.hpp:207
bool global_debug_flag
Definition: checkpoint.cpp:11
Definition: globals.hpp:284
bool global_perf_barriers_flag
Definition: checkpoint.cpp:12
KOKKOS_INLINE_FUNCTION unsigned positive_modulo(int value, unsigned m)
Definition: globals.hpp:226
PhiInterpType
Definition: globals.hpp:95
FAnalyticShape
Definition: globals.hpp:116
r coordinate
Definition: globals.hpp:201
Order
Definition: globals.hpp:77
constexpr PhiInterpType PIT_GLOBAL
Definition: globals.hpp:103
MagneticFieldMode
Definition: globals.hpp:127
constexpr MagneticFieldMode MFM_GLOBAL
Definition: globals.hpp:134
std::string formatted_int2str(int input, int n_digits)
Definition: globals.hpp:273
Definition: globals.hpp:217
Definition: globals.hpp:90
ParticlePhase
Definition: globals.hpp:200
2nd weight
Definition: globals.hpp:206
int SML_COMM_RANK
Definition: my_mpi.cpp:5
KinType
Definition: globals.hpp:88
GeometryType
Definition: globals.hpp:149
KOKKOS_INLINE_FUNCTION double geometry_switch(double a, double b)
Definition: globals.hpp:85
void exit_XGC(std::string msg)
Definition: globals.hpp:37
F0.
Definition: globals.hpp:213
int get_num_cpu_threads()
Definition: globals.hpp:17
phi coordinate
Definition: globals.hpp:203
static constexpr bool val
Definition: globals.hpp:284
KOKKOS_INLINE_FUNCTION constexpr bool use_toroidal_terms()
1st weight
Definition: globals.hpp:205
ParticleConsts
Definition: globals.hpp:210
z coordinate
Definition: globals.hpp:202
BFieldSymmetry
Definition: globals.hpp:137
long long int offsets_of_even_distribution(long long int n_obj, long long int n_subsets, long long int i_subset)
Definition: globals.hpp:243
WeightEvoEq
Definition: globals.hpp:121
SpeciesType
Definition: globals.hpp:83
bool causes_addition_overflow(int a, int b)
Definition: globals.hpp:68
KOKKOS_INLINE_FUNCTION void assert_XGC(bool cond, const char *msg)
Definition: globals.hpp:51